Menu Close

Question-156072




Question Number 156072 by ajfour last updated on 07/Oct/21
Commented by ajfour last updated on 07/Oct/21
Find p, q in terms of the circle  radius c.
$${Find}\:{p},\:{q}\:{in}\:{terms}\:{of}\:{the}\:{circle} \\ $$$${radius}\:{c}. \\ $$
Commented by mr W last updated on 07/Oct/21
you are right sir!
$${you}\:{are}\:{right}\:{sir}! \\ $$
Commented by mr W last updated on 07/Oct/21
(q/1)=(p/( (√(c^2 −p^2 ))))  c−p=(p/( (√(c^2 −p^2 ))))  p^2 −2cp+c^2 =(p^2 /( c^2 −p^2 ))  p^4 −2cp^3 +p^2 −3c^3 p−c^4 =0  ...
$$\frac{{q}}{\mathrm{1}}=\frac{{p}}{\:\sqrt{{c}^{\mathrm{2}} −{p}^{\mathrm{2}} }} \\ $$$${c}−{p}=\frac{{p}}{\:\sqrt{{c}^{\mathrm{2}} −{p}^{\mathrm{2}} }} \\ $$$${p}^{\mathrm{2}} −\mathrm{2}{cp}+{c}^{\mathrm{2}} =\frac{{p}^{\mathrm{2}} }{\:{c}^{\mathrm{2}} −{p}^{\mathrm{2}} } \\ $$$${p}^{\mathrm{4}} −\mathrm{2}{cp}^{\mathrm{3}} +{p}^{\mathrm{2}} −\mathrm{3}{c}^{\mathrm{3}} {p}−{c}^{\mathrm{4}} =\mathrm{0} \\ $$$$… \\ $$
Commented by ajfour last updated on 07/Oct/21
thanks sir,  little error  p^4 −2cp^3 +p^2 +2c^3 p−c^4 =0  p^2 (p^2 +1)=2c{p(p^2 −c^2 )+(c^3 /2)}  ...
$${thanks}\:{sir},\:\:{little}\:{error} \\ $$$${p}^{\mathrm{4}} −\mathrm{2}{cp}^{\mathrm{3}} +{p}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{3}} {p}−{c}^{\mathrm{4}} =\mathrm{0} \\ $$$${p}^{\mathrm{2}} \left({p}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{2}{c}\left\{{p}\left({p}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)+\frac{{c}^{\mathrm{3}} }{\mathrm{2}}\right\} \\ $$$$… \\ $$
Commented by ajfour last updated on 10/Oct/21

Leave a Reply

Your email address will not be published. Required fields are marked *