Menu Close

Question-156422




Question Number 156422 by SANOGO last updated on 11/Oct/21
Commented by cortano last updated on 11/Oct/21
 let x=t^6  →dx=6t^5  dt  I=∫ (t^3 /(1−t^2 )) (6t^5  dt)  = ∫ ((6t^8 )/(1−t^2 )) dt   partial fraction
$$\:\mathrm{let}\:\mathrm{x}=\mathrm{t}^{\mathrm{6}} \:\rightarrow\mathrm{dx}=\mathrm{6t}^{\mathrm{5}} \:\mathrm{dt} \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{t}^{\mathrm{3}} }{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\:\left(\mathrm{6t}^{\mathrm{5}} \:\mathrm{dt}\right) \\ $$$$=\:\int\:\frac{\mathrm{6t}^{\mathrm{8}} }{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}\: \\ $$$$\mathrm{partial}\:\mathrm{fraction} \\ $$
Commented by SANOGO last updated on 11/Oct/21
merci bien
$${merci}\:{bien} \\ $$
Answered by puissant last updated on 11/Oct/21
K=∫(1/( (√x)−(x)^(1/3) ))dx ; x=u^6 →dx=6u^5 du  ⇒ K=∫((6u^5 )/(u^3 −u^2 ))du = 6∫(u^3 /(u−1))du  =6∫((u^3 −1+1)/(u−1))du = 6∫((u^3 −1)/(u−1))du+6∫(1/(u−1))du  =6∫{u^2 +u+1}du+6ln∣u∣  ⇒ K=2u^3 +3u^2 +6u+6ln∣u∣+C  ⇒ K=2(x^(1/6) )^3 +3(x^(1/6) )^2 +6x^(1/6) +6ln∣x^(1/6) ∣+C    ∴∵ K=2(√x)+3(x)^(1/3) +6(x)^(1/6) +ln∣x∣+C..                   ..........Le puissant...........
$${K}=\int\frac{\mathrm{1}}{\:\sqrt{{x}}−\sqrt[{\mathrm{3}}]{{x}}}{dx}\:;\:{x}={u}^{\mathrm{6}} \rightarrow{dx}=\mathrm{6}{u}^{\mathrm{5}} {du} \\ $$$$\Rightarrow\:{K}=\int\frac{\mathrm{6}{u}^{\mathrm{5}} }{{u}^{\mathrm{3}} −{u}^{\mathrm{2}} }{du}\:=\:\mathrm{6}\int\frac{{u}^{\mathrm{3}} }{{u}−\mathrm{1}}{du} \\ $$$$=\mathrm{6}\int\frac{{u}^{\mathrm{3}} −\mathrm{1}+\mathrm{1}}{{u}−\mathrm{1}}{du}\:=\:\mathrm{6}\int\frac{{u}^{\mathrm{3}} −\mathrm{1}}{{u}−\mathrm{1}}{du}+\mathrm{6}\int\frac{\mathrm{1}}{{u}−\mathrm{1}}{du} \\ $$$$=\mathrm{6}\int\left\{{u}^{\mathrm{2}} +{u}+\mathrm{1}\right\}{du}+\mathrm{6}{ln}\mid{u}\mid \\ $$$$\Rightarrow\:{K}=\mathrm{2}{u}^{\mathrm{3}} +\mathrm{3}{u}^{\mathrm{2}} +\mathrm{6}{u}+\mathrm{6}{ln}\mid{u}\mid+{C} \\ $$$$\Rightarrow\:{K}=\mathrm{2}\left({x}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)^{\mathrm{3}} +\mathrm{3}\left({x}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)^{\mathrm{2}} +\mathrm{6}{x}^{\frac{\mathrm{1}}{\mathrm{6}}} +\mathrm{6}{ln}\mid{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \mid+{C} \\ $$$$ \\ $$$$\therefore\because\:{K}=\mathrm{2}\sqrt{{x}}+\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{6}\sqrt[{\mathrm{6}}]{{x}}+{ln}\mid{x}\mid+{C}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……….\mathscr{L}{e}\:{puissant}……….. \\ $$
Commented by SANOGO last updated on 11/Oct/21
merci bien
$${merci}\:{bien} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *