Menu Close

Question-156557




Question Number 156557 by mathlove last updated on 12/Oct/21
Commented by john_santu last updated on 13/Oct/21
 lim_(x→0)  (((3^x −1)^2 (3^x +1))/(1−cos x)).(((√2)+(√(1+cos x)))/1)  =4(√2) lim_(x→0) (((3^x −1)^2 )/(2sin^2 ((x/2))))  =2(√2) (lim_(x→0) ((3^x −1)/x).lim_(x→0) (x/(sin (1/2)x)))^2   =8(√2) ln^2 (3)
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{3}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{3}^{{x}} +\mathrm{1}\right)}{\mathrm{1}−\mathrm{cos}\:{x}}.\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{\mathrm{1}} \\ $$$$=\mathrm{4}\sqrt{\mathrm{2}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{3}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\:\left(\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3}^{{x}} −\mathrm{1}}{{x}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{8}\sqrt{\mathrm{2}}\:\mathrm{ln}\:^{\mathrm{2}} \left(\mathrm{3}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *