Question Number 156604 by amin96 last updated on 13/Oct/21
Commented by amin96 last updated on 13/Oct/21
$${help}\:{mi}\:{pleas} \\ $$
Commented by Rasheed.Sindhi last updated on 13/Oct/21
$$\mathrm{One}\:\:\mathrm{solution}:\:\left\{\mathrm{a},\mathrm{b},\mathrm{c}\right\}=\left\{\mathrm{1},\mathrm{2},\mathrm{3}\right\} \\ $$
Answered by Rasheed.Sindhi last updated on 13/Oct/21
$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} =\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \\ $$$$\begin{cases}{\mathrm{a}^{\mathrm{2}} \mid\:\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \Rightarrow\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} ={l}\mathrm{a}^{\mathrm{2}} }\\{\mathrm{b}^{\mathrm{2}} \mid\:\mathrm{a}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \Rightarrow\mathrm{a}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} ={m}\mathrm{b}^{\mathrm{2}} }\\{\mathrm{c}^{\mathrm{2}} \mid\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} \Rightarrow\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} ={n}\mathrm{c}^{\mathrm{2}} }\end{cases} \\ $$$$\left(\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} \right)+\left(\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \right)+\left(\mathrm{c}^{\mathrm{3}} +\mathrm{a}^{\mathrm{3}} \right)=\mathrm{2a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \\ $$$${l}\mathrm{a}^{\mathrm{2}} +{m}\mathrm{b}^{\mathrm{2}} +{n}\mathrm{c}^{\mathrm{2}} =\mathrm{2a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \\ $$$$….. \\ $$$$… \\ $$$$\frac{\mathrm{1}}{\mathrm{ab}}+\frac{\mathrm{1}}{\mathrm{bc}}+\frac{\mathrm{1}}{\mathrm{ca}}=\mathrm{abc} \\ $$$$….. \\ $$$$… \\ $$$$ \\ $$
Commented by amin96 last updated on 13/Oct/21
$${thanks}\:{sir}\: \\ $$