Menu Close

Question-156677




Question Number 156677 by saly last updated on 14/Oct/21
Commented by cortano last updated on 14/Oct/21
  lim_(n→∞) ((((a)^(1/n) +(b)^(1/n) )/2))^n ?
limn(an+bn2)n?
Commented by saly last updated on 14/Oct/21
whath?
whath?
Commented by john_santu last updated on 14/Oct/21
if A=lim_(x→∞)  ((((a)^(1/n) +(b)^(1/n) )/2))^n =((((a)^(1/n) +(n)^(1/b) )/2))^n ×lim_(x→∞) (1)  = ((((a)^(1/n)  +(b)^(1/n) )/2) )^n
ifA=limx(an+bn2)n=(an+nb2)n×limx(1)=(an+bn2)n
Answered by puissant last updated on 14/Oct/21
A=lim_(n→+∞) ((((a)^(1/n) +(b)^(1/n) )/2))^n  ;  x=(1/n) →n=(1/x)  A=lim_(x→0) (((a^x +b^x )/2))^(1/x) = lim_(x→0) (((1+xlna+1+xlnb)/2))^(1/x)   =lim_(x→0) (1+(x/2)ln(ab))^(1/x) =lim_(x→0) e^((ln(1+(x/2)lnab))/x)   = lim_(x→0) e^(((x/2)lnab)/x)   =  e^((1/2)lnab)   =  (√(ab))...        ∴∵  A = lim_(n→+∞) ((((a)^(1/n) +(b)^(1/n) )/2))^n = (√(ab))....                      ............Le puissant............
A=limn+(an+bn2)n;x=1nn=1xA=limx0(ax+bx2)1x=limx0(1+xlna+1+xlnb2)1x=limx0(1+x2ln(ab))1x=limx0eln(1+x2lnab)x=limx0ex2lnabx=e12lnab=ab∴∵A=limn+(an+bn2)n=ab.Lepuissant

Leave a Reply

Your email address will not be published. Required fields are marked *