Menu Close

Question-156729




Question Number 156729 by MathSh last updated on 14/Oct/21
Answered by MJS_new last updated on 15/Oct/21
∫((x+2)/((x^2 +3x+3)(√(x+1))))dx=       [t=(√(x+1)) → dx=2(√(x+1))dt]  =2∫((t^2 +1)/(t^4 +t^2 +1))dt=∫(dt/(t^2 −t+1))+∫(dt/(t^2 +t+1))=  =((2(√3))/3)arctan (((√3)(2t−1))/3) +((2(√3))/3)arctan (((√3)(2t+1))/3) =  =((2(√3))/3)(arctan (((√3)(2(√(x+1))−1))/3) +arctan (((√3)(2(√(x+1))+1))/3))+C
x+2(x2+3x+3)x+1dx=[t=x+1dx=2x+1dt]=2t2+1t4+t2+1dt=dtt2t+1+dtt2+t+1==233arctan3(2t1)3+233arctan3(2t+1)3==233(arctan3(2x+11)3+arctan3(2x+1+1)3)+C
Commented by MathSh last updated on 15/Oct/21
Very nice dear Ser thankyou
VerynicedearSerthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *