Menu Close

Question-156739




Question Number 156739 by cortano last updated on 15/Oct/21
Commented by john_santu last updated on 15/Oct/21
 B=∫ (√((sin x+cos x)/(sin x−cos x))) dx     =∫ (√((sin (x+(π/4)))/(−cos (x+(π/4))))) dx    =∫ (√(−tan  (x+(π/4)))) dx    =∫(√(cot (x+((3π)/4)))) d(x+((3π)/4))   =∫ (dq/( (√(tan q))))    let y=(√(tan q)) ⇒q=tan^(−1) (y^2 )   dq=((2y)/(1+y^4 )) dy    B=∫ (1/y).((2y)/(1+y^4 )) dy=∫ ((2dy)/(1+y^4 ))   = ∫ (((y^2 +1)−(y^2 −1))/(1+y^4 )) dy   =∫ ((1+(1/y^2 ))/(y^2 +(1/y^2 )))dy−∫((1−y^2 )/(y^2 +(1/y^2 )))dy   =∫ ((d(y−(1/y)))/((y−(1/y))^2 +2))+∫ ((d(y+(1/y)))/(2−(y+(1/y))^2 ))   =(1/( (√2))) tan^(−1) ((1/( (√2)))(y−(1/y)))+(1/( (√2)))tanh^(−1) ((1/( (√2)))(y+(1/y)))+C   =(1/( (√2)))tan^(−1) ((1/( (√2)))((√(tan q))−(1/( (√(tan q))))))+(1/( (√2)))tanh^(−1) ((1/( (√2)))((√(tan q))+(1/( (√(tan q))))))+C   =(1/( (√2)))tan^(−1) ((1/( (√2)))((√(tan (x+((3π)/4))))−(1/( (√(tan (x+((3π)/4)))))))     +(1/( (√2)))tanh^(−1) ((1/( (√2)))((√(tan (x+((3π)/4))))+(1/( (√(tan (x+((3π)/4)))))))+C
B=sinx+cosxsinxcosxdx=sin(x+π4)cos(x+π4)dx=tan(x+π4)dx=cot(x+3π4)d(x+3π4)=dqtanqlety=tanqq=tan1(y2)dq=2y1+y4dyB=1y.2y1+y4dy=2dy1+y4=(y2+1)(y21)1+y4dy=1+1y2y2+1y2dy1y2y2+1y2dy=d(y1y)(y1y)2+2+d(y+1y)2(y+1y)2=12tan1(12(y1y))+12tanh1(12(y+1y))+C=12tan1(12(tanq1tanq))+12tanh1(12(tanq+1tanq))+C=12tan1(12(tan(x+3π4)1tan(x+3π4))+12tanh1(12(tan(x+3π4)+1tan(x+3π4))+C

Leave a Reply

Your email address will not be published. Required fields are marked *