Menu Close

Question-156743




Question Number 156743 by cortano last updated on 15/Oct/21
Answered by MJS_new last updated on 15/Oct/21
0≤x≤(1/2) ⇒  ∫(dx/( (((1+x)^2 (1−x)^6 ))^(1/4) ))=  =∫(dx/( (1−x)(√(1−x^2 ))))=       [t=((1+(√(1−x^2 )))/x) → dx=−((x^2 (√(1−x^2 )))/(1+(√(1−x^2 ))))dt]  =−2∫(dt/((t−1)^2 ))=(2/(t−1))=...  =((√(1−x^2 ))/(1−x))−1+C  ⇒  (−1+(√3))∫_0 ^(1/2) (dx/( (((1+x)^2 (1−x)^6 ))^(1/4) ))=4−2(√3)
0x12dx(1+x)2(1x)64==dx(1x)1x2=[t=1+1x2xdx=x21x21+1x2dt]=2dt(t1)2=2t1==1x21x1+C(1+3)1/20dx(1+x)2(1x)64=423
Answered by FongXD last updated on 15/Oct/21
=∫_0 ^(1/2) ((((√3)−1)/( (((1+x)^2 (1−x)^2 (1−x)^4 ))^(1/4) )))dx  =∫_0 ^(1/2) [(((√3)−1)/((1−x)(((1−x^2 )^2 ))^(1/4) ))]dx  let x=sinθ, ⇒ dx=cosθdθ  =∫_0 ^(π/6) (((√3)−1)/((1−sinθ)(((1−sin^2 θ)^2 ))^(1/4) ))×cosθdθ  =∫_0 ^(π/6) ((((√3)−1)dθ)/(1−sinθ))=∫_0 ^(π/6) ((((√3)−1)dθ)/((cos(θ/2)−sin(θ/2))^2 ))  =(((√3)−1)/2)∫_0 ^(π/6) (dθ/(cos^2 ((θ/2)+(π/4))))=(((√3)−1)/2)[2tan((θ/2)+(π/4))]_0 ^(π/6)   =((√3)−1)(tan(π/3)−tan(π/4))=((√3)−1)^2 =4−2(√3)  so.  determinant (((∫_0 ^(1/2) ((((√3)−1)/( (((1+x)^2 (1−x)^4 ))^(1/4) )))dx=4−2(√3))))
=012(31(1+x)2(1x)2(1x)44)dx=012[31(1x)(1x2)24]dxletx=sinθ,dx=cosθdθ=0π631(1sinθ)(1sin2θ)24×cosθdθ=0π6(31)dθ1sinθ=0π6(31)dθ(cosθ2sinθ2)2=3120π6dθcos2(θ2+π4)=312[2tan(θ2+π4)]0π6=(31)(tanπ3tanπ4)=(31)2=423so.012(31(1+x)2(1x)44)dx=423
Commented by cortano last updated on 15/Oct/21
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *