Menu Close

Question-156891




Question Number 156891 by cortano last updated on 16/Oct/21
Answered by mindispower last updated on 17/Oct/21
1−tg^2 ((x/2^k ))=((cos((x/2^(k−1) )))/(cos^2 ((x/2^k ))))  Π_(k=1) ^n (1−tg^2 ((x/2^k )))=(1/(cos((x/2^n ))Π_(k=1) ^n cos((x/2^k )))).((sin((x/2^n )))/(sin((x/2^n ))))  =2^n ((sin((x/2^n )))/(cos((x/2^n ))sin(x)))  lim_(n→∞) .((2^n sin((x/2^n )))/(cos((x/2^n ))sin(x)))=(x/(sin(x)))  lim_(x→0) (x/(sin(x)))=lim_(x→0) (1/(cos(x)))=1.(Using Hopital)
$$\mathrm{1}−{tg}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{k}} }\right)=\frac{{cos}\left(\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right)}{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{k}} }\right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}−{tg}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right)=\frac{\mathrm{1}}{{cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)}.\frac{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)} \\ $$$$=\mathrm{2}^{{n}} \frac{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right){sin}\left({x}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{2}^{{n}} {sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right){sin}\left({x}\right)}=\frac{{x}}{{sin}\left({x}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{{sin}\left({x}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{cos}\left({x}\right)}=\mathrm{1}.\left({Using}\:{Hopital}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *