Menu Close

Question-156914




Question Number 156914 by cortano last updated on 17/Oct/21
Answered by puissant last updated on 17/Oct/21
D=∫((arcsin((1/x)))/x^5 )dx ; u=(1/x) → du=−(1/x^2 )dx  ⇒ D=−∫ ((u^5 arcsin(u))/u^2 )du=−∫u^3 arcsin(u)du  IBP⇒ D=−3[u^2 arcsin(u)]+3∫(u^2 /( (√(1−u^2 ))))du  ⇒ D=−3u^2 arcsin(u)−3∫((1−u^2 −1)/( (√(1−u^2 ))))du  ⇒ D=−3u^2 arcsin(u)−3∫(√(1−u^2 ))+3∫(1/( (√(1−u^2 ))))du  ⇒ D=−3u^2 arcsin(u)−(3/2)[t+(1/2)sin2t]+3arcsin(u)+C  ⇒ D=((−3)/x^2 )arcsin((1/x))−(3/2)arcsin((1/x))−(3/2)sin(2arcsin((1/x)))+3arcsin((1/x))+C  ∴∵ D=3{((1/2)−(1/x^2 ))arcsin((1/x))−(1/2)sin(2arcsin((1/x)))}+C..
D=arcsin(1x)x5dx;u=1xdu=1x2dxD=u5arcsin(u)u2du=u3arcsin(u)duIBPD=3[u2arcsin(u)]+3u21u2duD=3u2arcsin(u)31u211u2duD=3u2arcsin(u)31u2+311u2duD=3u2arcsin(u)32[t+12sin2t]+3arcsin(u)+CD=3x2arcsin(1x)32arcsin(1x)32sin(2arcsin(1x))+3arcsin(1x)+C∴∵D=3{(121x2)arcsin(1x)12sin(2arcsin(1x))}+C..
Commented by cortano last updated on 17/Oct/21
yes .
yes.
Answered by cortano last updated on 17/Oct/21

Leave a Reply

Your email address will not be published. Required fields are marked *