Question-156914 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 156914 by cortano last updated on 17/Oct/21 Answered by puissant last updated on 17/Oct/21 D=∫arcsin(1x)x5dx;u=1x→du=−1x2dx⇒D=−∫u5arcsin(u)u2du=−∫u3arcsin(u)duIBP⇒D=−3[u2arcsin(u)]+3∫u21−u2du⇒D=−3u2arcsin(u)−3∫1−u2−11−u2du⇒D=−3u2arcsin(u)−3∫1−u2+3∫11−u2du⇒D=−3u2arcsin(u)−32[t+12sin2t]+3arcsin(u)+C⇒D=−3x2arcsin(1x)−32arcsin(1x)−32sin(2arcsin(1x))+3arcsin(1x)+C∴∵D=3{(12−1x2)arcsin(1x)−12sin(2arcsin(1x))}+C.. Commented by cortano last updated on 17/Oct/21 yes. Answered by cortano last updated on 17/Oct/21 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-91377Next Next post: Question-25842 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.