Menu Close

Question-156915




Question Number 156915 by mnjuly1970 last updated on 17/Oct/21
Answered by qaz last updated on 07/Nov/21
∫_0 ^∞ (dx/((π^2 +x^2 )cosh x))  =∫_(−∞) ^(+∞) (e^x /((e^(2x) +1)(π^2 +x^2 )))dx  =∫_(−∞) ^(+∞) (e^x /(e^(2x) +1))∙(1/π)ℜ∫_0 ^∞ e^(−(π−ix)y) dydx  =(1/π)ℜ∫_0 ^∞ e^(−πy) dy∫_(−∞) ^(+∞) (e^(x(1+iy)) /(e^(2x) +1))dx  =(1/(2π))ℜ∫_0 ^∞ e^(−πy) dy∫_0 ^∞ (t^((iy−1)/2) /(t+1))dt.......e^x →t  =(1/2)ℜ∫_0 ^∞ (e^(−πy) /(sin (((iy+1)/2)π)))dy  =(1/2)∫_0 ^∞ (e^(−πy) /(cosh ((πy)/2)))dy  =(1/π)∫_0 ^∞ ((2e^(−3y) )/(1+e^(−2y) ))dy  =(2/π)Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ e^(−(2n+3)y) dy  =(2/π)Σ_(n=0) ^∞ (((−1)^n )/(2n+3))  =(2/π)(1−(π/4))  =(2/π)−(1/2)
0dx(π2+x2)coshx=+ex(e2x+1)(π2+x2)dx=+exe2x+11π0e(πix)ydydx=1π0eπydy+ex(1+iy)e2x+1dx=12π0eπydy0tiy12t+1dt.ext=120eπysin(iy+12π)dy=120eπycoshπy2dy=1π02e3y1+e2ydy=2πn=0(1)n0e(2n+3)ydy=2πn=0(1)n2n+3=2π(1π4)=2π12

Leave a Reply

Your email address will not be published. Required fields are marked *