Menu Close

Question-156933




Question Number 156933 by CAIMAN last updated on 17/Oct/21
Answered by mindispower last updated on 17/Oct/21
(1/t)=x  ∫_(1/2) ^(1/3) ((ln(x))/(x(1+x)))dx=∫((ln(x))/x)−((ln(x))/(1+x))dx  =((ln^2 (x))/2)−ln(x)ln(1+x)+∫((ln(1+x))/x)dx  y=−x in ∫((ln(1+x))/x)dx  =∫((ln(1−y))/y)dy=−Li_2 (y),Li_2 ...dilogarithm function  ∫((ln(x))/(x(1+x)))=((ln^2 (x))/2)−ln(x)ln(1+x)−Li_2 (−x)+c  ∫_(1/2) ^(1/3) ((ln(x))/(x(1+x)))dx=(1/2)(ln^2 (3)−ln^2 (3))−ln((1/3))ln((4/3))+ln((1/2))ln((3/2))  −li_2 (−(1/3))+li_2 (−(1/2))
1t=x1213ln(x)x(1+x)dx=ln(x)xln(x)1+xdx=ln2(x)2ln(x)ln(1+x)+ln(1+x)xdxy=xinln(1+x)xdx=ln(1y)ydy=Li2(y),Li2dilogarithmfunctionln(x)x(1+x)=ln2(x)2ln(x)ln(1+x)Li2(x)+c1213ln(x)x(1+x)dx=12(ln2(3)ln2(3))ln(13)ln(43)+ln(12)ln(32)li2(13)+li2(12)

Leave a Reply

Your email address will not be published. Required fields are marked *