Menu Close

Question-156979




Question Number 156979 by cortano last updated on 18/Oct/21
Commented by cortano last updated on 18/Oct/21
 Σ_(k=1) ^n (−1)^k  C_k ^( n)  =0
nk=1(1)kCkn=0
Commented by cortano last updated on 18/Oct/21
prove the equality
provetheequality
Answered by FongXD last updated on 18/Oct/21
Binomial Expansion: (a+b)^n =Σ_(r=0) ^n C(n,r)a^(n−r) b^r   set a=1 and b=−1  we get: (1−1)^n =Σ_(r=0) ^n C(n,r)(−1)^r   ⇔ 0=C(n,0)+C(n,1)(−1)^1 +C(n,2)(−1)^2 +C(n,3)(−1)^3 +...+C(n,n)(−1)^n   therefore, 1−C(n,1)+C(n,2)−C(n,3)+...+(−1)^n C(n,n)=0
BinomialExpansion:(a+b)n=nr=0C(n,r)anrbrseta=1andb=1weget:(11)n=nr=0C(n,r)(1)r0=C(n,0)+C(n,1)(1)1+C(n,2)(1)2+C(n,3)(1)3++C(n,n)(1)ntherefore,1C(n,1)+C(n,2)C(n,3)++(1)nC(n,n)=0
Answered by puissant last updated on 18/Oct/21
f(x)=(1+x)^n =Σ_(k=0) ^n C_k ^n x^k 1^(n−k)   ⇒ f(x)=(1+x)^n =Σ_(k=0) ^n C_k ^n x^k  ;  x=−1  ⇒ f(−1)=(1−1)^n =Σ_(k=0) ^n (−1)^k C_k ^n   ⇒ Σ_(k=0) ^n (−1)^k C_k ^n = 0 ....
f(x)=(1+x)n=nk=0Cknxk1nkf(x)=(1+x)n=nk=0Cknxk;x=1f(1)=(11)n=nk=0(1)kCknnk=0(1)kCkn=0.

Leave a Reply

Your email address will not be published. Required fields are marked *