Question Number 156992 by MathSh last updated on 18/Oct/21
Commented by MJS_new last updated on 19/Oct/21
$$\mathrm{I}\:\mathrm{get} \\ $$$${x}=\mathrm{1}\vee{x}\approx−.\mathrm{428605913602} \\ $$$$\mathrm{no}\:\mathrm{other}\:\mathrm{solution}\:\in\mathbb{C} \\ $$
Answered by Rasheed.Sindhi last updated on 18/Oct/21
$$\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{1}}}+\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}}\: \\ $$$$\left(\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{1}}}+\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}}\:\right)^{\mathrm{3}} \\ $$$$\blacktriangleright\frac{\mathrm{27}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} +\mathrm{1}} \\ $$$$\:\:\:\:\:+\mathrm{3}\left(\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{1}}}\right)\left(\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\right)\left(\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{1}}}+\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\right)=\mathrm{8}\left(\mathrm{4}\right) \\ $$$$\blacktriangleright\frac{\mathrm{27}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}+\mathrm{3}\left(\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{1}}}\right)\left(\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\right)\left(\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}}\right)=\mathrm{8}\left(\mathrm{4}\right) \\ $$$$\blacktriangleright\frac{\mathrm{27}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}+\left(\frac{\mathrm{9x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}}\right)\left(\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}}\right)=\mathrm{8}\left(\mathrm{4}\right) \\ $$$$\blacktriangleright\frac{\mathrm{18}\sqrt[{\mathrm{3}}]{\mathrm{4}\:}\:\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}}=\mathrm{32}−\frac{\mathrm{27}}{\mathrm{x}+\mathrm{1}}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} +\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{32}\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)−\mathrm{27}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)+\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{32}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)−\mathrm{27}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)+\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}}{\mathrm{x}^{\mathrm{3}} +\mathrm{1}} \\ $$$$\blacktriangleright\left(\frac{\mathrm{18}\sqrt[{\mathrm{3}}]{\mathrm{4}\:}\:\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}}\right)^{\mathrm{3}} =\left(\frac{\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}}{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\frac{\mathrm{5832}\left(\mathrm{4}\right)\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}=\frac{\left(\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}\right)^{\mathrm{3}} }{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\frac{\mathrm{5832}\left(\mathrm{4}\right)\mathrm{x}^{\mathrm{3}} }{\mathrm{x}+\mathrm{1}}=\frac{\left(\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}\right)^{\mathrm{3}} }{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\frac{\mathrm{5832}\left(\mathrm{4}\right)\mathrm{x}^{\mathrm{3}} }{\mathrm{x}+\mathrm{1}}=\frac{\left(\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}\right)^{\mathrm{3}} }{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\mathrm{5832}\left(\mathrm{4}\right)\mathrm{x}^{\mathrm{3}} =\frac{\left(\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}\right)^{\mathrm{3}} }{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\blacktriangleright\mathrm{5832}\left(\mathrm{4}\right)\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left(\mathrm{33x}^{\mathrm{3}} −\mathrm{27x}^{\mathrm{2}} +\mathrm{27x}+\mathrm{5}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$$ \\ $$$$\:\:\:\mathrm{x}=−\mathrm{0}.\mathrm{423807}\:\left({With}\:{the}\:{help}\:{of}\:{calculator}\right) \\ $$
Commented by Tawa11 last updated on 18/Oct/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by MathSh last updated on 18/Oct/21
$$\mathrm{dear}\:\mathrm{Ser}\:\mathrm{ans}:\mathrm{1} \\ $$
Commented by mr W last updated on 18/Oct/21
$${such}\:{questions}\:{have}\:{no}\:{generality}! \\ $$$${you}\:{can}'{t}\:{really}\:{solve}\:{them}.\:{they} \\ $$$${just}\:{request}\:{that}\:{you}\:“{see}''\:{the}\:{solution} \\ $$$${or}\:{not}.\:{but}\:{when}\:{a}\:{single}\:{value}\:{is} \\ $$$${changed},\:{no}\:{solution}\:{can}\:{be}\:“{seen}''. \\ $$$$\mathrm{3}+\frac{{x}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}\left(\mathrm{1}+{x}\right)} \\ $$$$\mathrm{3}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }}}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}\left(\mathrm{1}+{x}\right)} \\ $$$${one}\:{guess}\:\mathrm{3}+\mathrm{1}=\mathrm{2}×\mathrm{2},\:{and}\:{one}\:{gets}\:{x}=\mathrm{1} \\ $$$${which}\:{fulfills}\:{the}\:{equation}.\:{so}\:{x}=\mathrm{1} \\ $$$${is}\:{a}\:{solution}\:{you}\:{can}\:{see}.\:{whether} \\ $$$${there}\:{is}\:{an}\:{other}\:{solution}?\:{you}\:{can}\: \\ $$$${not}\:{know}\:{and}\:{you}\:{can}\:{not}\:{see}. \\ $$$${when}\:{the}\:{eqn}.\:{is}\:{changed}\:{to} \\ $$$$\frac{\mathrm{5}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}}}+\frac{{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{3}} }}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{4}} \\ $$$${no}\:{solution}\:{can}\:{be}\:“{seen}''. \\ $$
Commented by mr W last updated on 18/Oct/21
$${MathSh}\:{sir}: \\ $$$${x}=\mathrm{1}\:{is}\:{not}\:{the}\:{only}\:{solution}! \\ $$
Commented by MathSh last updated on 18/Oct/21
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{Ser} \\ $$