Menu Close

Question-15700




Question Number 15700 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Jun/17
j,is the incircle of AB^Δ C.  MN∥AC,KL∥AB,OP∥BC  OP=x,MN=y,KL=z,AB=c,BC=a,AC=b.  a>b>c>1  .........................................................  show that:  1)(x/a)+(y/b)+(z/c)=2  2)(a/x)+(b/y)+(c/z)≥(9/2)
$${j},{is}\:{the}\:{incircle}\:{of}\:{A}\overset{\Delta} {{B}C}. \\ $$$${MN}\parallel{AC},{KL}\parallel{AB},{OP}\parallel{BC} \\ $$$${OP}={x},{MN}={y},{KL}={z},{AB}={c},{BC}={a},{AC}={b}. \\ $$$${a}>{b}>{c}>\mathrm{1} \\ $$$$………………………………………………… \\ $$$${show}\:{that}: \\ $$$$\left.\mathrm{1}\right)\frac{\boldsymbol{{x}}}{\boldsymbol{{a}}}+\frac{\boldsymbol{{y}}}{\boldsymbol{{b}}}+\frac{\boldsymbol{{z}}}{\boldsymbol{{c}}}=\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\frac{\boldsymbol{{a}}}{\boldsymbol{{x}}}+\frac{\boldsymbol{{b}}}{\boldsymbol{{y}}}+\frac{\boldsymbol{{c}}}{\boldsymbol{{z}}}\geqslant\frac{\mathrm{9}}{\mathrm{2}} \\ $$
Answered by mrW1 last updated on 13/Jun/17
h_a =((2A)/a) with A=area of ABC  r=(A/s) with s=semiperimeter  (r/h_a )=(a/(2s))=(a/p) with p=perimeter  (x/a)=((h_a −r)/h_a )=1−(r/h_a )=1−(a/p)  similarly  (y/b)=1−(b/p)  (z/c)=1−(c/p)  ⇒(x/a)+(y/b)+(z/c)=3−(1/p)(a+b+c)=3−1=2    (a/x)=(1/(x/a))=(1/(1−(a/p)))>1  (b/y)=(1/(1−(b/p)))>1  (c/z)=(1/(1−(c/p)))>1  (a/x)+(b/y)+(c/x)=(1/(1−(a/p)))+(1/(1−(b/p)))+(1/(1−(c/p)))  ≥3×(1/(1−(1/3)))=(9/2)
$$\mathrm{h}_{\mathrm{a}} =\frac{\mathrm{2A}}{\mathrm{a}}\:\mathrm{with}\:\mathrm{A}=\mathrm{area}\:\mathrm{of}\:\mathrm{ABC} \\ $$$$\mathrm{r}=\frac{\mathrm{A}}{\mathrm{s}}\:\mathrm{with}\:\mathrm{s}=\mathrm{semiperimeter} \\ $$$$\frac{\mathrm{r}}{\mathrm{h}_{\mathrm{a}} }=\frac{\mathrm{a}}{\mathrm{2s}}=\frac{\mathrm{a}}{\mathrm{p}}\:\mathrm{with}\:\mathrm{p}=\mathrm{perimeter} \\ $$$$\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{h}_{\mathrm{a}} −\mathrm{r}}{\mathrm{h}_{\mathrm{a}} }=\mathrm{1}−\frac{\mathrm{r}}{\mathrm{h}_{\mathrm{a}} }=\mathrm{1}−\frac{\mathrm{a}}{\mathrm{p}} \\ $$$$\mathrm{similarly} \\ $$$$\frac{\mathrm{y}}{\mathrm{b}}=\mathrm{1}−\frac{\mathrm{b}}{\mathrm{p}} \\ $$$$\frac{\mathrm{z}}{\mathrm{c}}=\mathrm{1}−\frac{\mathrm{c}}{\mathrm{p}} \\ $$$$\Rightarrow\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=\mathrm{3}−\frac{\mathrm{1}}{\mathrm{p}}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=\mathrm{3}−\mathrm{1}=\mathrm{2} \\ $$$$ \\ $$$$\frac{\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{1}}{\frac{\mathrm{x}}{\mathrm{a}}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{a}}{\mathrm{p}}}>\mathrm{1} \\ $$$$\frac{\mathrm{b}}{\mathrm{y}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{b}}{\mathrm{p}}}>\mathrm{1} \\ $$$$\frac{\mathrm{c}}{\mathrm{z}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{c}}{\mathrm{p}}}>\mathrm{1} \\ $$$$\frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{a}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{b}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{c}}{\mathrm{p}}} \\ $$$$\geqslant\mathrm{3}×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Jun/17
thanks for your care. errorfixed.
$${thanks}\:{for}\:{your}\:{care}.\:{errorfixed}. \\ $$
Commented by ajfour last updated on 13/Jun/17
      (a/p)≥(1/3) ( Sir, some proof please).
$$\:\:\:\:\:\:\frac{{a}}{{p}}\geqslant\frac{\mathrm{1}}{\mathrm{3}}\:\left(\:{Sir},\:{some}\:{proof}\:{please}\right). \\ $$
Commented by mrW1 last updated on 13/Jun/17
I didn′t mean that (a/p)≥(1/3), but I mean  minimum for (1/(1−(a/p)))+(1/(1−(b/p)))+(1/(1−(c/p))) is  (9/2) when (a/p)=(b/p)=(c/p)=(1/3).    Here is the proof:  let x=(a/p), y=(b/p),z=(c/p)  x+y+z=1  (1/(1−(a/p)))+(1/(1−(b/p)))+(1/(1−(c/p))) =(1/(1−x))+(1/(1−y))+(1/(1−z))  =(1/(1−x))+(1/(1−y))+(1/(x+y))=f(x,y)  (∂f/∂x)=(1/((1−x)^2 ))−(1/((x+y)^2 ))  (∂f/∂y)=(1/((1−y)^2 ))−(1/((x+y)^2 ))    f(x,y) is minimum when (∂f/∂x)=0 and (∂f/∂y)=0  (∂f/∂x)=(1/((1−x)^2 ))−(1/((x+y)^2 ))=0  ⇒1−x=x+y    ...(i)    (∂f/∂y)=(1/((1−y)^2 ))−(1/((x+y)^2 ))=0  ⇒1−y=x+y    ...(ii)    from (i) and (ii)  x=y=(1/3)  z=1−(x+y)=(1/3)  f(x,y)_(min.) =3×(1/(1−(1/3)))=(9/2)  that it is a minimum not a maximum  can be checked with (∂^2 f/∂x^2 ),(∂^2 f/∂y^2 ),(∂^2 f/(∂x∂y)).
$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{mean}\:\mathrm{that}\:\frac{\mathrm{a}}{\mathrm{p}}\geqslant\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{but}\:\mathrm{I}\:\mathrm{mean} \\ $$$$\mathrm{minimum}\:\mathrm{for}\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{a}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{b}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{c}}{\mathrm{p}}}\:\mathrm{is} \\ $$$$\frac{\mathrm{9}}{\mathrm{2}}\:\mathrm{when}\:\frac{\mathrm{a}}{\mathrm{p}}=\frac{\mathrm{b}}{\mathrm{p}}=\frac{\mathrm{c}}{\mathrm{p}}=\frac{\mathrm{1}}{\mathrm{3}}. \\ $$$$ \\ $$$$\mathrm{Here}\:\mathrm{is}\:\mathrm{the}\:\mathrm{proof}: \\ $$$$\mathrm{let}\:\mathrm{x}=\frac{\mathrm{a}}{\mathrm{p}},\:\mathrm{y}=\frac{\mathrm{b}}{\mathrm{p}},\mathrm{z}=\frac{\mathrm{c}}{\mathrm{p}} \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{a}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{b}}{\mathrm{p}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{c}}{\mathrm{p}}}\:=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{y}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{z}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{y}}+\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}}=\mathrm{f}\left(\mathrm{x},\mathrm{y}\right) \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} } \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{y}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{minimum}\:\mathrm{when}\:\frac{\partial\mathrm{f}}{\partial\mathrm{x}}=\mathrm{0}\:\mathrm{and}\:\frac{\partial\mathrm{f}}{\partial\mathrm{y}}=\mathrm{0} \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{x}=\mathrm{x}+\mathrm{y}\:\:\:\:…\left(\mathrm{i}\right) \\ $$$$ \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{y}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{y}=\mathrm{x}+\mathrm{y}\:\:\:\:…\left(\mathrm{ii}\right) \\ $$$$ \\ $$$$\mathrm{from}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{x}=\mathrm{y}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{z}=\mathrm{1}−\left(\mathrm{x}+\mathrm{y}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)_{\mathrm{min}.} =\mathrm{3}×\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$$\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{minimum}\:\mathrm{not}\:\mathrm{a}\:\mathrm{maximum} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{checked}\:\mathrm{with}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{x}^{\mathrm{2}} },\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{y}^{\mathrm{2}} },\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{x}\partial\mathrm{y}}. \\ $$
Commented by ajfour last updated on 13/Jun/17
thank you immensely Sir.  i′ll need to study partial derivatives  again, for when i did i was  not  mature enough then..
$${thank}\:{you}\:{immensely}\:{Sir}. \\ $$$${i}'{ll}\:{need}\:{to}\:{study}\:{partial}\:{derivatives} \\ $$$${again},\:{for}\:{when}\:{i}\:{did}\:{i}\:{was}\:\:{not} \\ $$$${mature}\:{enough}\:{then}.. \\ $$
Commented by mrW1 last updated on 13/Jun/17
once you said symmetry is beautiful.  symmetry is also a part of the nature.  if a function is symmetric over several  variables, its maximum or minimum  is always then when all variables  are equal. this gives me the direction,  the rest is how to prove it mathematically.
$$\mathrm{once}\:\mathrm{you}\:\mathrm{said}\:\mathrm{symmetry}\:\mathrm{is}\:\mathrm{beautiful}. \\ $$$$\mathrm{symmetry}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{nature}. \\ $$$$\mathrm{if}\:\mathrm{a}\:\mathrm{function}\:\mathrm{is}\:\mathrm{symmetric}\:\mathrm{over}\:\mathrm{several} \\ $$$$\mathrm{variables},\:\mathrm{its}\:\mathrm{maximum}\:\mathrm{or}\:\mathrm{minimum} \\ $$$$\mathrm{is}\:\mathrm{always}\:\mathrm{then}\:\mathrm{when}\:\mathrm{all}\:\mathrm{variables} \\ $$$$\mathrm{are}\:\mathrm{equal}.\:\mathrm{this}\:\mathrm{gives}\:\mathrm{me}\:\mathrm{the}\:\mathrm{direction}, \\ $$$$\mathrm{the}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{mathematically}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *