Menu Close

Question-157007




Question Number 157007 by Armindo last updated on 18/Oct/21
Commented by Armindo last updated on 18/Oct/21
I need help, for to solve This exercice.
Answered by TheHoneyCat last updated on 21/Oct/21
(1/(^4 (√2)+^4 (√4)+^4 (√8)+2))  =(1/(2^(1/4) +4^(1/4) +8^(1/4) +2))  =(1/(2^(1/4) +2^(2/4) +2^(3/4) +2^(4/4) ))  =(Σ_(k=1) ^4 (2^(1/4) )^k )^(−1)   =(2^(1/4) ((2^(4/4) −1)/(2^(1/4) −1)))^(−1) =(((2)^(1/4) −1)/( (2)^(1/4) ))≈0.2    the second formula has no simplification...
$$\frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{\mathrm{2}}+^{\mathrm{4}} \sqrt{\mathrm{4}}+^{\mathrm{4}} \sqrt{\mathrm{8}}+\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}/\mathrm{4}} +\mathrm{4}^{\mathrm{1}/\mathrm{4}} +\mathrm{8}^{\mathrm{1}/\mathrm{4}} +\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}/\mathrm{4}} +\mathrm{2}^{\mathrm{2}/\mathrm{4}} +\mathrm{2}^{\mathrm{3}/\mathrm{4}} +\mathrm{2}^{\mathrm{4}/\mathrm{4}} } \\ $$$$=\left(\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left(\mathrm{2}^{\mathrm{1}/\mathrm{4}} \right)^{{k}} \right)^{−\mathrm{1}} \\ $$$$=\left(\mathrm{2}^{\mathrm{1}/\mathrm{4}} \frac{\mathrm{2}^{\mathrm{4}/\mathrm{4}} −\mathrm{1}}{\mathrm{2}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}}\right)^{−\mathrm{1}} =\frac{\sqrt[{\mathrm{4}}]{\mathrm{2}}−\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{2}}}\approx\mathrm{0}.\mathrm{2} \\ $$$$ \\ $$$${the}\:{second}\:{formula}\:{has}\:{no}\:{simplification}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *