Question Number 157175 by cortano last updated on 20/Oct/21
Commented by puissant last updated on 20/Oct/21
$$\Omega=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$
Answered by Mathspace last updated on 20/Oct/21
$${I}=\int_{\mathrm{0}} ^{\infty} {ln}\left(\frac{\mathrm{1}+{e}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}−\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}−{e}^{\left.−{x}\right)} {dx}\right. \\ $$$${ln}^{'} \left(\mathrm{1}+{u}\right){dx}=\frac{\mathrm{1}}{\mathrm{1}+{u}}=\Sigma\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{u}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty\:} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}\:} \frac{{u}^{{n}} }{{n}}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{e}^{−{x}} \right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\frac{{e}^{−{nx}} }{{n}} \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} {dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\left(−\frac{\mathrm{1}}{{n}}\right)\left[{e}^{−{nx}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }=−\delta\left(\mathrm{2}\right) \\ $$$$=−\left(\mathrm{2}^{\mathrm{1}−\mathrm{2}} −\mathrm{1}\right)\xi\left(\mathrm{2}\right) \\ $$$$=−\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)×\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$${ln}^{'} \left(\mathrm{1}−{u}\right)=−\frac{\mathrm{1}}{\mathrm{1}−{u}}=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}\:} \Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow{ln}\left(\mathrm{1}−{e}^{−{x}} \right) \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{e}^{−{nx}} }{{n}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}−{e}^{−{x}} \right){dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} {e}^{−{nx}} {dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}\left[−\frac{\mathrm{1}}{{n}}{e}^{−{nx}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\Rightarrow \\ $$$${I}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{12}}\Rightarrow{I}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$
Answered by Mathspace last updated on 20/Oct/21
$${another}\:{way} \\ $$$$\Psi=\int_{\mathrm{0}} ^{\infty} {ln}\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right){dx}\:\Rightarrow \\ $$$$\Psi=\int_{\mathrm{0}} ^{\infty} {ln}\left(\frac{\mathrm{1}+{e}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}−\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}−{e}^{\left.−{x}\right)} {dx}\right. \\ $$$${we}\:{have}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}−{e}^{−{x}} \right){dx}=_{{e}^{−{x}} ={t}} \:\int_{\mathrm{1}} ^{\mathrm{0}} {ln}\left(\mathrm{1}−{t}\right)\left(−\frac{{dt}}{{t}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}}\left(−\sum_{{n}=\mathrm{1}} ^{\infty\:} \frac{{t}^{{n}} }{{n}}\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty\:} \frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}\:} {t}^{{n}−\mathrm{1}} {dt} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty\:} \frac{\mathrm{1}}{{n}^{\mathrm{2}} }=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}\:=_{{e}^{−{x}} ={t}} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{0}} \:{ln}\left(\mathrm{1}+{t}\right)\left(−\frac{{dt}}{{t}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}{dt} \\ $$$${ln}^{'} \left(\mathrm{1}+{t}\right)=\Sigma\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{t}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}{t}^{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{t}^{{n}} }{{n}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {t}^{{n}} }{{n}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}−\mathrm{1}} {dt} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\Rightarrow \\ $$$$\Psi=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\left(−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$