Menu Close

Question-157222




Question Number 157222 by amin96 last updated on 21/Oct/21
Answered by Dimitri_01 last updated on 21/Oct/21
A=Σ_(n=1) ^(25) (1/(n(n+100)))=(1/(100))Σ_(n=1) ^(25) (((n+100)−n)/(n(n+100)))      =(1/(100))Σ_(n=1) ^(25) ((1/n)−(1/(n+100)))=(1/(100))(1−(1/(101))+(1/2)−(1/(102))+(1/3)−(1/(103))+∙∙∙+(1/(25))−(1/(125)))
$$\mathrm{A}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{100}\right)}=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}\frac{\left({n}+\mathrm{100}\right)−{n}}{{n}\left({n}+\mathrm{100}\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{100}}\underset{{n}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{100}}\right)=\frac{\mathrm{1}}{\mathrm{100}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{101}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{102}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{103}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{25}}−\frac{\mathrm{1}}{\mathrm{125}}\right) \\ $$$$ \\ $$
Answered by qaz last updated on 21/Oct/21
(A/B)=((Σ_(n=1) ^(25) (1/(n(100+n))))/(Σ_(n=1) ^(100) (1/(n(n+25)))))  =((Σ_(n=1) ^(25) ((1/n)−(1/(n+100))))/(4Σ_(n=1) ^(100) ((1/n)−(1/(n+25)))))  =((H_(25) −H_(125) +H_(100) )/(4(H_(100) −H_(125) +H_(25) )))  =(1/4)
$$\frac{\mathrm{A}}{\mathrm{B}}=\frac{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{100}+\mathrm{n}\right)}}{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{25}\right)}} \\ $$$$=\frac{\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{25}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{100}}\right)}{\mathrm{4}\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{25}}\right)} \\ $$$$=\frac{\mathrm{H}_{\mathrm{25}} −\mathrm{H}_{\mathrm{125}} +\mathrm{H}_{\mathrm{100}} }{\mathrm{4}\left(\mathrm{H}_{\mathrm{100}} −\mathrm{H}_{\mathrm{125}} +\mathrm{H}_{\mathrm{25}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by Tawa11 last updated on 21/Oct/21
Great sirs
$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *