Question Number 157223 by amin96 last updated on 21/Oct/21
Answered by Rasheed.Sindhi last updated on 21/Oct/21
$$\underset{−} {\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }+\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\mathrm{k};\frac{\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }+\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} }=?} \\ $$$$\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)}=\mathrm{k} \\ $$$$\frac{\mathrm{2}\left(\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} \right)}{\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} }=\mathrm{k} \\ $$$$\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} }=\frac{\mathrm{k}}{\mathrm{2}} \\ $$$$\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} }+\frac{\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} }=\frac{\mathrm{k}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{k}} \\ $$$$\frac{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} \right)^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} \right)\left(\mathrm{x}^{\mathrm{4}} −\mathrm{y}^{\mathrm{4}} \right)}=\frac{\mathrm{k}^{\mathrm{2}} +\mathrm{4}}{\mathrm{2k}} \\ $$$$\frac{\mathrm{2}\left(\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} \right)}{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }=\frac{\mathrm{k}^{\mathrm{2}} +\mathrm{4}}{\mathrm{2k}} \\ $$$$\frac{\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }=\frac{\mathrm{k}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4k}} \\ $$$$\frac{\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }+\frac{\mathrm{x}^{\mathrm{8}} −\mathrm{y}^{\mathrm{8}} }{\mathrm{x}^{\mathrm{8}} +\mathrm{y}^{\mathrm{8}} }=\frac{\mathrm{k}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4k}}+\frac{\mathrm{4k}}{\mathrm{k}^{\mathrm{2}} +\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{k}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{4k}\right)^{\mathrm{2}} }{\mathrm{2k}\left(\mathrm{k}^{\mathrm{2}} +\mathrm{4}\right)}=\frac{\mathrm{k}^{\mathrm{4}} +\mathrm{8k}^{\mathrm{2}} +\mathrm{16}+\mathrm{16k}^{\mathrm{2}} }{\mathrm{4k}\left(\mathrm{k}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{k}^{\mathrm{4}} +\mathrm{24k}^{\mathrm{2}} +\mathrm{16}}{\mathrm{4k}\left(\mathrm{k}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$
Answered by som(math1967) last updated on 21/Oct/21
$$\frac{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}={k} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }{{x}^{\mathrm{4}} −{y}^{\mathrm{4}} }=\frac{{k}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{x}^{\mathrm{4}} −{y}^{\mathrm{4}} }{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} −{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }=\frac{{k}+\mathrm{2}}{{k}−\mathrm{2}}\bigstar \\ $$$$\Rightarrow\frac{{x}^{\mathrm{8}} }{{y}^{\mathrm{8}} }=\left(\frac{{k}+\mathrm{2}}{{k}−\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{8}} +{y}^{\mathrm{8}} }{{x}^{\mathrm{8}} −{y}^{\mathrm{8}} }=\frac{\mathrm{2}\left({k}^{\mathrm{2}} +\mathrm{4}\right)}{\mathrm{8}{k}}\:\bigstar \\ $$$$\therefore\frac{{x}^{\mathrm{8}} +{y}^{\mathrm{8}} }{{x}^{\mathrm{8}} −{y}^{\mathrm{8}} }\:+\:\frac{{x}^{\mathrm{8}} −{y}^{\mathrm{8}} }{{x}^{\mathrm{8}} +{y}^{\mathrm{8}} }=\frac{{k}^{\mathrm{2}} +\mathrm{4}}{\mathrm{4}{k}}+\frac{\mathrm{4}{k}}{{k}^{\mathrm{2}} +\mathrm{4}} \\ $$$$\:\:\:\:=\frac{{k}^{\mathrm{4}} +\mathrm{24}{k}^{\mathrm{2}} +\mathrm{16}}{\mathrm{4}{k}\left({k}^{\mathrm{2}} +\mathrm{4}\right)} \\ $$$$\bigstar{if}\:\frac{{a}}{{b}}=\frac{{c}}{{d}}\:{then}\:\frac{{a}+{b}}{{a}−{b}}=\frac{{c}+{d}}{{c}−{d}} \\ $$$${componendo}\:{and}\:{dividendo} \\ $$