Menu Close

Question-157562




Question Number 157562 by Ar Brandon last updated on 24/Oct/21
Answered by FongXD last updated on 24/Oct/21
Given: x+y+z=3  square both sides of the equation  ⇔ x^2 +y^2 +z^2 +2xy+2yz+2xz=9  AM-GM inequality: a+b≥2(√(ab))  we get: x^2 +y^2 +z^2 +(x^2 +y^2 )+(y^2 +z^2 )+(x^2 +z^2 )≥9  ⇒ x^2 +y^2 +z^2 ≥3
$$\mathrm{Given}:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3} \\ $$$$\mathrm{square}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\Leftrightarrow\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{2yz}+\mathrm{2xz}=\mathrm{9} \\ $$$$\mathrm{AM}-\mathrm{GM}\:\mathrm{inequality}:\:\mathrm{a}+\mathrm{b}\geqslant\mathrm{2}\sqrt{\mathrm{ab}} \\ $$$$\mathrm{we}\:\mathrm{get}:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)+\left(\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)+\left(\mathrm{x}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)\geqslant\mathrm{9} \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \geqslant\mathrm{3} \\ $$
Commented by Ar Brandon last updated on 24/Oct/21
thanks
$$\mathrm{thanks} \\ $$
Answered by mnjuly1970 last updated on 24/Oct/21
   c−sinequality        (x+y+z)^( 2) ≤ (1+1+1)(x^( 2) +y^( 2) +z^( 2) )           3 ≤ x^( 2) +y^( 2) + z^( 2)
$$\:\:\:{c}−{sinequality} \\ $$$$\:\:\:\:\:\:\left({x}+{y}+{z}\right)^{\:\mathrm{2}} \leqslant\:\left(\mathrm{1}+\mathrm{1}+\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +{y}^{\:\mathrm{2}} +{z}^{\:\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{3}\:\leqslant\:{x}^{\:\mathrm{2}} +{y}^{\:\mathrm{2}} +\:{z}^{\:\mathrm{2}} \\ $$
Commented by Ar Brandon last updated on 24/Oct/21
thank you sir.
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *