Question Number 157790 by MathSh last updated on 28/Oct/21
Answered by MJS_new last updated on 28/Oct/21
$$\mathrm{let}\:{c}=\mathrm{cos}\:{x} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{32}{c}^{\mathrm{5}} −\mathrm{40}{c}^{\mathrm{3}} +\mathrm{9}{c}}+\sqrt[{\mathrm{3}}]{\mathrm{16}{c}^{\mathrm{5}} −\mathrm{20}{c}^{\mathrm{3}} +\mathrm{4}{c}}=\sqrt[{\mathrm{3}}]{{c}} \\ $$$${u}+{v}={w}\:\:\:\:\:\mid^{\mathrm{3}} \\ $$$${u}^{\mathrm{3}} +\mathrm{3}{u}^{\mathrm{2}} {v}+\mathrm{3}{uv}^{\mathrm{2}} +{v}^{\mathrm{3}} ={w}^{\mathrm{3}} \\ $$$${u}^{\mathrm{3}} +\mathrm{3}{uv}\left({u}+{v}\right)+{v}^{\mathrm{3}} ={w}^{\mathrm{3}} \\ $$$${u}^{\mathrm{3}} +\mathrm{3}{uvw}+{v}^{\mathrm{3}} ={w}^{\mathrm{3}} \\ $$$$\mathrm{3}{uvw}={w}^{\mathrm{3}} −\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right) \\ $$$$\mathrm{27}{u}^{\mathrm{3}} {v}^{\mathrm{3}} {w}^{\mathrm{3}} =\left({w}^{\mathrm{3}} −\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right)\right)^{\mathrm{3}} \\ $$$$\mathrm{inserting}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{108}{c}^{\mathrm{3}} \left(\mathrm{4}{c}^{\mathrm{4}} −\mathrm{5}{c}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{32}{c}^{\mathrm{4}} −\mathrm{40}{c}^{\mathrm{2}} +\mathrm{9}\right)=−\mathrm{1728}{c}^{\mathrm{3}} \left(\mathrm{4}{c}^{\mathrm{4}} −\mathrm{5}{c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:{c}=\mathrm{0}\vee\mathrm{4}{c}^{\mathrm{4}} −\mathrm{5}{c}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{32}{c}^{\mathrm{4}} −\mathrm{40}{c}^{\mathrm{2}} +\mathrm{9}=−\mathrm{16}\left(\mathrm{4}{c}^{\mathrm{4}} −\mathrm{5}{c}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{let}\:{c}^{\mathrm{2}} ={d}+\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{32}{d}^{\mathrm{2}} −\frac{\mathrm{7}}{\mathrm{2}}=−\frac{\left(\mathrm{64}{d}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} }{\mathrm{16}} \\ $$$${d}^{\mathrm{4}} −\frac{\mathrm{5}}{\mathrm{32}}{d}^{\mathrm{2}} +\frac{\mathrm{25}}{\mathrm{4096}}=\mathrm{0} \\ $$$$\left({d}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{64}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${d}=\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{8}} \\ $$$${c}^{\mathrm{2}} =\frac{\mathrm{5}\pm\sqrt{\mathrm{5}}}{\mathrm{8}} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$${c}=\mathrm{0} \\ $$$${c}=\pm\mathrm{1} \\ $$$${c}=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${c}=\pm\sqrt{\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{8}}} \\ $$$${c}=\pm\sqrt{\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{8}}} \\ $$$$\mathrm{testing}\:\mathrm{leads}\:\mathrm{to} \\ $$$${c}=\mathrm{0}\vee{c}=\pm\frac{\mathrm{1}}{\mathrm{2}}\vee{c}=\pm\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:\mathrm{we}\:\mathrm{get} \\ $$$${x}\in\left\{\mathrm{0},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{6},\:\mathrm{8},\:\mathrm{9},\:\mathrm{10}\right\}×\frac{\pi}{\mathrm{6}} \\ $$
Commented by MathSh last updated on 28/Oct/21
$$\mathrm{Perfect}\:\mathrm{dear}\:\boldsymbol{\mathrm{Ser}},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$