Question Number 157826 by cortano last updated on 28/Oct/21
Answered by MJS_new last updated on 29/Oct/21
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\left(\mathrm{2}+\mathrm{5}{x}\right)\sqrt[{\mathrm{4}}]{\mathrm{2}{x}^{\mathrm{3}} \left(\mathrm{1}−{x}\right)}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{4}}]{\frac{\mathrm{7}{x}}{\mathrm{2}\left(\mathrm{1}−{x}\right)}}\:\rightarrow\:{dx}=\mathrm{4}\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}{x}^{\mathrm{3}} \left(\mathrm{1}−{x}\right)^{\mathrm{5}} }{\mathrm{7}}}{dt}\right] \\ $$$$=\frac{\mathrm{2}}{\mathrm{7}^{\mathrm{1}/\mathrm{4}} }\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{4}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}/\mathrm{2}} \mathrm{7}^{\mathrm{1}/\mathrm{4}} }\left[\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}\:+\mathrm{2}\left(\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)\:+\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)\right)\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\pi}{\mathrm{2}^{\mathrm{1}/\mathrm{2}} \mathrm{7}^{\mathrm{1}/\mathrm{4}} }\:\left(=\frac{\pi}{\:\sqrt[{\mathrm{4}}]{\mathrm{28}}}\right) \\ $$
Commented by cortano last updated on 30/Oct/21
$${great} \\ $$