Menu Close

Question-157887




Question Number 157887 by Tawa11 last updated on 29/Oct/21
Commented by Tawa11 last updated on 29/Oct/21
Proof please
Proofplease
Commented by Rasheed.Sindhi last updated on 29/Oct/21
f is not afunction.It′s a relation.  Because f(3) is not unique.
fisnotafunction.Itsarelation.Becausef(3)isnotunique.
Answered by Rasheed.Sindhi last updated on 29/Oct/21
f={(β,a),(3,b),(3,c)}    f(β)=a,f(3)=b,f(3)=c  g={(a,3),(b,β),(c,β)}  g( f(β) )=g(a)=3  g( f(3) )=g(b)=β  g( f(3) )=g(c)=β  gof={(β,3),(3,β)}  g={(a,3),(b,β),(c,β)}     g(a)=3,g(b)=β,g(c)=β  f={(β,a),(3,b),(3,c)}  f( g(a) )=f(3)=b,c  f( g(b) )=f(β)=a  f( g(c) )=f(β)=a  fog={(a,b)(a,c)(b,a),(c,a)}
f={(β,a),(3,b),(3,c)}f(β)=a,f(3)=b,f(3)=cg={(a,3),(b,β),(c,β)}g(f(β))=g(a)=3g(f(3))=g(b)=βg(f(3))=g(c)=βgof={(β,3),(3,β)}g={(a,3),(b,β),(c,β)}g(a)=3,g(b)=β,g(c)=βf={(β,a),(3,b),(3,c)}f(g(a))=f(3)=b,cf(g(b))=f(β)=af(g(c))=f(β)=afog={(a,b)(a,c)(b,a),(c,a)}
Commented by Tawa11 last updated on 29/Oct/21
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *