Question Number 157925 by cortano last updated on 29/Oct/21
Answered by FongXD last updated on 30/Oct/21
$$\mathrm{Given}:\:\frac{\mathrm{sin}\alpha\mathrm{cos}\alpha}{\mathrm{sin}\beta\mathrm{cos}\beta}=\frac{\mathrm{8}}{\mathrm{5}}\:\:\:\left(\mathrm{1}\right)\:\mathrm{and}\:\frac{\mathrm{sin}\alpha\mathrm{cos}\beta}{\mathrm{sin}\beta\mathrm{cos}\alpha}=\mathrm{4}\:\:\:\left(\mathrm{2}\right) \\ $$$$\Leftrightarrow\:\left(\mathrm{1}\right)\centerdot\left(\mathrm{2}\right):\:\frac{\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{sin}^{\mathrm{2}} \beta}=\frac{\mathrm{32}}{\mathrm{5}}\:\mathrm{and}\:\left(\mathrm{1}\right)\boldsymbol{\div}\left(\mathrm{2}\right):\:\frac{\mathrm{cos}^{\mathrm{2}} \alpha}{\mathrm{cos}^{\mathrm{2}} \beta}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\Leftrightarrow\:\mathrm{5}−\mathrm{5sin}^{\mathrm{2}} \alpha=\mathrm{2}−\mathrm{2sin}^{\mathrm{2}} \beta \\ $$$$\mathrm{but}\:\mathrm{5sin}^{\mathrm{2}} \alpha=\mathrm{32sin}^{\mathrm{2}} \beta \\ $$$$\Leftrightarrow\:\mathrm{5}−\mathrm{32sin}^{\mathrm{2}} \beta=\mathrm{2}−\mathrm{2sin}^{\mathrm{2}} \beta \\ $$$$\Leftrightarrow\:\mathrm{30sin}^{\mathrm{2}} \beta=\mathrm{3} \\ $$$$\Leftrightarrow\:\mathrm{sin}\beta^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{10}},\:\Rightarrow\:\mathrm{cos}^{\mathrm{2}} \beta=\sqrt{\frac{\mathrm{99}}{\mathrm{100}}}=\frac{\mathrm{3}\sqrt{\mathrm{11}}}{\mathrm{10}} \\ $$$$\mathrm{we}\:\mathrm{get}:\:\mathrm{tan}\alpha+\mathrm{tan}\beta=\mathrm{5tan}\beta=\pm\mathrm{5}\sqrt{\frac{\mathrm{sin}^{\mathrm{2}} \beta}{\mathrm{cos}^{\mathrm{2}} \beta}}=\pm\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}\sqrt{\mathrm{11}}}} \\ $$
Commented by cortano last updated on 30/Oct/21
$$\mathrm{cos}\:^{\mathrm{2}} \beta=\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \beta=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{10}}=\frac{\mathrm{9}}{\mathrm{10}} \\ $$$$\mathrm{cos}\:^{\mathrm{2}} \beta=\frac{\mathrm{9}}{\mathrm{10}}\:? \\ $$
Commented by FongXD last updated on 30/Oct/21
$$\mathrm{ohh}\:\mathrm{yeah},\:\mathrm{my}\:\mathrm{bad},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{correcting}!! \\ $$
Commented by cortano last updated on 30/Oct/21
$${great}\:{sir} \\ $$