Menu Close

Question-157942




Question Number 157942 by mathlove last updated on 30/Oct/21
Commented by cortano last updated on 30/Oct/21
(1)x+2x+3x+...+nx=(n/2)(nx+x)  (2)lim_(x→0)  (((1+(x/2))(1+((2x)/2))(1+((3x)/2))...(1+((nx)/2))−1)/((n/2)(nx+x)))  L=(2/(n(n+1))).lim_(x→0) ((((1/2)+(2/2)+(3/2)+...+(n/2))x)/x)  L=(2/(n(n+1))).(1/2)(1+2+3+...+n)  L=(((n/2)(n+1))/(n(n+1))) = (1/2)
$$\left(\mathrm{1}\right){x}+\mathrm{2}{x}+\mathrm{3}{x}+…+{nx}=\frac{{n}}{\mathrm{2}}\left({nx}+{x}\right) \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{2}}\right)\left(\mathrm{1}+\frac{\mathrm{3}{x}}{\mathrm{2}}\right)…\left(\mathrm{1}+\frac{{nx}}{\mathrm{2}}\right)−\mathrm{1}}{\frac{{n}}{\mathrm{2}}\left({nx}+{x}\right)} \\ $$$${L}=\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}+…+\frac{{n}}{\mathrm{2}}\right){x}}{{x}} \\ $$$${L}=\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}.\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}\right) \\ $$$${L}=\frac{\frac{{n}}{\mathrm{2}}\left({n}+\mathrm{1}\right)}{{n}\left({n}+\mathrm{1}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *