Menu Close

Question-158366




Question Number 158366 by HongKing last updated on 03/Nov/21
Answered by MathsFan last updated on 03/Nov/21
((lne)/(lnx•lnx))+((lne)/((lne−lnx)(lne−lnx)))=8  say  a=lnx  (1/a^2 )+(1/(1−2a+a^2 ))=8   2a^2 −2a−7=0   a=((1±(√(15)))/2)  lnx=((1±(√(15)))/2)   x=e^((1±(√(15)))/2)
$$\frac{\mathrm{lne}}{\mathrm{lnx}\bullet\mathrm{lnx}}+\frac{\mathrm{lne}}{\left(\mathrm{lne}−\mathrm{lnx}\right)\left(\mathrm{lne}−\mathrm{lnx}\right)}=\mathrm{8} \\ $$$$\mathrm{say}\:\:\mathrm{a}=\mathrm{lnx} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{2a}+\mathrm{a}^{\mathrm{2}} }=\mathrm{8} \\ $$$$\:\mathrm{2a}^{\mathrm{2}} −\mathrm{2a}−\mathrm{7}=\mathrm{0} \\ $$$$\:\mathrm{a}=\frac{\mathrm{1}\pm\sqrt{\mathrm{15}}}{\mathrm{2}} \\ $$$$\mathrm{lnx}=\frac{\mathrm{1}\pm\sqrt{\mathrm{15}}}{\mathrm{2}} \\ $$$$\:\mathrm{x}=\mathrm{e}^{\frac{\mathrm{1}\pm\sqrt{\mathrm{15}}}{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *