Menu Close

Question-158410




Question Number 158410 by tebohlouis last updated on 03/Nov/21
Answered by MJS_new last updated on 03/Nov/21
2x+3≥0∧(x−2)(x+1)>0 ∨ 2x+3≤0∧(x−2)(x+1)<0    2x+3≥0 ⇒ x≥−(3/2)  (x−2)(x+1)>0 ⇒ x<−1∨x>2  ⇒ −(3/2)≤x<−1∨x>2    2x+3≤0 ⇒ x≤−(3/2)  (x−2)(x+1)<0 ⇒ −1<x<2  no solution    ⇒ x∈[−(3/2); −1)∪(2; +∞)
2x+30(x2)(x+1)>02x+30(x2)(x+1)<02x+30x32(x2)(x+1)>0x<1x>232x<1x>22x+30x32(x2)(x+1)<01<x<2nosolutionx[32;1)(2;+)
Answered by physicstutes last updated on 06/Nov/21
zero′s  x−2 = 0 ⇒ x = 2  x+1 = 0 ⇒ x = −1  2x + 3 = 0 ⇒ x = −(3/2)   determinant (((x<−(3/2)),(−(3/2)<x<−1),(−1<x<2),(x>2)),(−,+,−,+))  S = { x: −(3/2)≤x<−1∪x>2}
zerosx2=0x=2x+1=0x=12x+3=0x=32x<3232<x<11<x<2x>2++S={x:32x<1x>2}

Leave a Reply

Your email address will not be published. Required fields are marked *