Menu Close

Question-158410




Question Number 158410 by tebohlouis last updated on 03/Nov/21
Answered by MJS_new last updated on 03/Nov/21
2x+3≥0∧(x−2)(x+1)>0 ∨ 2x+3≤0∧(x−2)(x+1)<0    2x+3≥0 ⇒ x≥−(3/2)  (x−2)(x+1)>0 ⇒ x<−1∨x>2  ⇒ −(3/2)≤x<−1∨x>2    2x+3≤0 ⇒ x≤−(3/2)  (x−2)(x+1)<0 ⇒ −1<x<2  no solution    ⇒ x∈[−(3/2); −1)∪(2; +∞)
$$\mathrm{2}{x}+\mathrm{3}\geqslant\mathrm{0}\wedge\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)>\mathrm{0}\:\vee\:\mathrm{2}{x}+\mathrm{3}\leqslant\mathrm{0}\wedge\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)<\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2}{x}+\mathrm{3}\geqslant\mathrm{0}\:\Rightarrow\:{x}\geqslant−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)>\mathrm{0}\:\Rightarrow\:{x}<−\mathrm{1}\vee{x}>\mathrm{2} \\ $$$$\Rightarrow\:−\frac{\mathrm{3}}{\mathrm{2}}\leqslant{x}<−\mathrm{1}\vee{x}>\mathrm{2} \\ $$$$ \\ $$$$\mathrm{2}{x}+\mathrm{3}\leqslant\mathrm{0}\:\Rightarrow\:{x}\leqslant−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)<\mathrm{0}\:\Rightarrow\:−\mathrm{1}<{x}<\mathrm{2} \\ $$$$\mathrm{no}\:\mathrm{solution} \\ $$$$ \\ $$$$\Rightarrow\:{x}\in\left[−\frac{\mathrm{3}}{\mathrm{2}};\:−\mathrm{1}\right)\cup\left(\mathrm{2};\:+\infty\right) \\ $$
Answered by physicstutes last updated on 06/Nov/21
zero′s  x−2 = 0 ⇒ x = 2  x+1 = 0 ⇒ x = −1  2x + 3 = 0 ⇒ x = −(3/2)   determinant (((x<−(3/2)),(−(3/2)<x<−1),(−1<x<2),(x>2)),(−,+,−,+))  S = { x: −(3/2)≤x<−1∪x>2}
$$\mathrm{zero}'\mathrm{s} \\ $$$${x}−\mathrm{2}\:=\:\mathrm{0}\:\Rightarrow\:{x}\:=\:\mathrm{2} \\ $$$${x}+\mathrm{1}\:=\:\mathrm{0}\:\Rightarrow\:{x}\:=\:−\mathrm{1} \\ $$$$\mathrm{2}{x}\:+\:\mathrm{3}\:=\:\mathrm{0}\:\Rightarrow\:{x}\:=\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\begin{array}{|c|c|}{{x}<−\frac{\mathrm{3}}{\mathrm{2}}}&\hline{−\frac{\mathrm{3}}{\mathrm{2}}<{x}<−\mathrm{1}}&\hline{−\mathrm{1}<{x}<\mathrm{2}}&\hline{{x}>\mathrm{2}}\\{−}&\hline{+}&\hline{−}&\hline{+}\\\hline\end{array} \\ $$$${S}\:=\:\left\{\:{x}:\:−\frac{\mathrm{3}}{\mathrm{2}}\leqslant{x}<−\mathrm{1}\cup{x}>\mathrm{2}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *