Question Number 158422 by ajfour last updated on 03/Nov/21
Commented by Tawa11 last updated on 04/Nov/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by ajfour last updated on 05/Nov/21
$${Let}\:{right}\:{bottom}\:{angle} \\ $$$$\:\:\:\:=\frac{\pi}{\mathrm{4}}+\mathrm{2}\theta \\ $$$$\frac{{b}}{{c}}=\frac{\frac{{b}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{8}}+\theta\right)}}{\frac{{b}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{8}}+\theta\right)}+{b}+{c}} \\ $$$$\Rightarrow\frac{{c}}{{b}}=\mathrm{1}+\left(\mathrm{1}+\frac{{c}}{{b}}\right)\mathrm{sin}\:\alpha\: \\ $$$$\Rightarrow\:\:\frac{{c}}{{b}}=\frac{\mathrm{1}+\mathrm{sin}\:\alpha}{\mathrm{1}−\mathrm{sin}\:\alpha}\:\:\:\:\:\:\:\:..\left({i}\right) \\ $$$$ \\ $$$${similarly} \\ $$$$\frac{{a}}{{c}}=\frac{\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{8}}−\theta\right)}}{\frac{{a}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{8}}−\theta\right)+{a}+{c}}}\: \\ $$$$\Rightarrow\:\:\:\:\:\frac{{c}}{{a}}=\frac{\mathrm{1}+\mathrm{sin}\:\beta}{\mathrm{1}−\mathrm{sin}\:\beta}\:\:\:\:\:\:\:….\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\alpha+\beta=\frac{\pi}{\mathrm{4}}\:\:\:\:\:….\left({I}\right) \\ $$$$\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{2}\theta\right)={p}\:\:\:\:\:\:\:\:…\left({iv}\right) \\ $$$${c}={a}+{b}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\left({v}\right) \\ $$$${unknowns}: \\ $$$$\:\:\:\:\theta,{p},{c},{a},{b} \\ $$$$…………………………………. \\ $$$${work}: \\ $$$${from}\:\:\:\:\:\frac{{a}}{{c}}+\frac{{b}}{{c}}=\mathrm{1} \\ $$$$\frac{\mathrm{1}−\mathrm{sin}\:\alpha}{\mathrm{1}+\mathrm{sin}\:\alpha}+\frac{\mathrm{1}−\mathrm{sin}\:\beta}{\mathrm{1}+\mathrm{sin}\:\beta}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{2}−\mathrm{2sin}\:\alpha\mathrm{sin}\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{1}+\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta+\mathrm{sin}\:\alpha\mathrm{sin}\:\beta \\ $$$$\Rightarrow\mathrm{3sin}\:\alpha\mathrm{sin}\:\beta=\mathrm{1}−\left(\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\right) \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}\left\{\mathrm{cos}\:\left(\alpha−\beta\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right\}=\mathrm{1}−\mathrm{2sin}\:\left(\frac{\pi}{\mathrm{8}}\right)\mathrm{cos}\:\left(\frac{\alpha−\beta}{\mathrm{2}}\right) \\ $$$$−−−−−−−−−−−−− \\ $$$${let}\:\:\alpha−\beta=\mathrm{2}\delta \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{2cos}\:^{\mathrm{2}} \delta−\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\mathrm{2sin}\:\frac{\pi}{\mathrm{8}}\mathrm{cos}\:\delta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\mathrm{2}\lambda\mathrm{cos}\:\delta \\ $$$$\mathrm{6cos}\:^{\mathrm{2}} \delta+\mathrm{4}\lambda\mathrm{cos}\:\delta−\left(\mathrm{5}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}\right)=\mathrm{0} \\ $$$$\mathrm{cos}\:\delta=−\frac{\lambda}{\mathrm{3}}+\sqrt{\frac{\lambda^{\mathrm{2}} }{\mathrm{9}}+\frac{\left(\mathrm{10}+\mathrm{3}\sqrt{\mathrm{2}}\right)}{\mathrm{12}}} \\ $$$$\mathrm{cos}\:\delta=−\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{6}}+\sqrt{\frac{\mathrm{2}−\sqrt{\mathrm{2}}+\mathrm{30}+\mathrm{9}\sqrt{\mathrm{2}}}{\mathrm{36}}} \\ $$$$\mathrm{6cos}\:\delta=\sqrt{\mathrm{32}+\mathrm{8}\sqrt{\mathrm{2}}}−\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\:\alpha−\beta=\mathrm{2}\delta=\mathrm{2cos}^{−\mathrm{1}} \frac{{k}}{\mathrm{6}} \\ $$$${and}\:{as}\:\:\alpha+\beta=\frac{\pi}{\mathrm{4}}\: \\ $$$${p}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\pm\mathrm{2}\theta\right)=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\pm\mathrm{2}\delta\right) \\ $$$${p}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\pm\mathrm{2cos}^{−\mathrm{1}} \frac{{k}}{\mathrm{6}}\right) \\ $$$$−−−−−−−−−−−−− \\ $$$$\:\boldsymbol{{p}}=\mathrm{tan}\:\left\{\frac{\pi}{\mathrm{4}}\pm\mathrm{2cos}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{32}+\mathrm{8}\sqrt{\mathrm{2}}}−\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{6}}\right)\right\} \\ $$$$−−−−−−−−−−−−− \\ $$$$ \\ $$
Commented by mr W last updated on 05/Nov/21
$${perfect}\:{solution}! \\ $$
Answered by mr W last updated on 04/Nov/21
$${c}+\frac{{c}}{{c}−{b}}\sqrt{\left({c}+{b}\right)^{\mathrm{2}} −\left({c}−{b}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{c}+\frac{\mathrm{2}{c}\sqrt{{bc}}}{{c}−{b}}=\mathrm{1} \\ $$$$\Rightarrow{c}+\frac{\mathrm{2}{c}\sqrt{{bc}}}{{a}}=\mathrm{1}\:\:\:…\left({i}\right) \\ $$$${c}+\frac{{c}}{{c}−{a}}\sqrt{\left({c}+{a}\right)^{\mathrm{2}} −\left({c}−{a}\right)^{\mathrm{2}} }={p} \\ $$$$\Rightarrow{c}+\frac{\mathrm{2}{c}\sqrt{{ac}}}{{c}−{a}}={p} \\ $$$$\Rightarrow{c}+\frac{\mathrm{2}{c}\sqrt{{ac}}}{{b}}={p}\:\:\:…\left({ii}\right) \\ $$$$\sqrt{\mathrm{1}^{\mathrm{2}} +{p}^{\mathrm{2}} }=\frac{\mathrm{2}{c}\sqrt{{bc}}}{{a}}+\frac{\mathrm{2}{c}\sqrt{{ac}}}{{b}} \\ $$$$\sqrt{\mathrm{1}^{\mathrm{2}} +{p}^{\mathrm{2}} }=\mathrm{1}+{p}−\mathrm{2}{c}\:\:\:…\left({iii}\right) \\ $$$${from}\:\left({iii}\right): \\ $$$${c}=\frac{\mathrm{1}+{p}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${from}\:\left({i}\right): \\ $$$$\frac{\sqrt{{b}}}{{a}}=\frac{\mathrm{1}−{c}}{\mathrm{2}{c}\sqrt{{c}}} \\ $$$${from}\:\left({ii}\right): \\ $$$$\frac{\sqrt{{a}}}{{b}}=\frac{{p}−{c}}{\mathrm{2}{c}\sqrt{{c}}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{ab}}}=\frac{\left(\mathrm{1}−{c}\right)\left({p}−{c}\right)}{\mathrm{4}{c}^{\mathrm{3}} } \\ $$$${ab}=\frac{\mathrm{16}{c}^{\mathrm{6}} }{\:\left(\mathrm{1}−{c}\right)^{\mathrm{2}} \left({p}−{c}\right)^{\mathrm{2}} } \\ $$$$\left(\frac{{b}}{{a}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{1}−{c}}{{p}−{c}} \\ $$$$\frac{{b}}{{a}}=\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${b}^{\mathrm{2}} =\frac{\mathrm{16}{c}^{\mathrm{6}} }{\:\left(\mathrm{1}−{c}\right)^{\mathrm{2}} \left({p}−{c}\right)^{\mathrm{2}} }\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${b}=\frac{\mathrm{4}{c}^{\mathrm{3}} }{\:\left(\mathrm{1}−{u}\right)\left({p}−{u}\right)}\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${a}=\frac{\mathrm{4}{c}^{\mathrm{3}} }{\:\left(\mathrm{1}−{c}\right)\left({p}−{c}\right)}\left(\frac{{p}−{c}}{\mathrm{1}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${a}+{b}=\frac{\mathrm{4}{c}^{\mathrm{3}} }{\:\left(\mathrm{1}−\mathrm{4}\right)\left({p}−{c}\right)}\left[\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} +\left(\frac{{p}−{c}}{\mathrm{1}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right] \\ $$$${c}=\frac{\mathrm{4}{c}^{\mathrm{3}} }{\:\left(\mathrm{1}−{c}\right)\left({p}−{c}\right)}\left[\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} +\left(\frac{{p}−{c}}{\mathrm{1}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right] \\ $$$$\frac{\mathrm{4}{c}^{\mathrm{2}} }{\:\left(\mathrm{1}−{c}\right)\left({p}−{c}\right)}\left[\left(\frac{\mathrm{1}−{c}}{{p}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} +\left(\frac{{p}−{c}}{\mathrm{1}−{c}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right]=\mathrm{1} \\ $$$${or} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+\frac{\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}{{p}−\mathrm{1}}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} +\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}−\frac{\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}{{p}−\mathrm{1}}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\left(\frac{\mathrm{1}}{\mathrm{1}+{p}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\frac{{p}}{\mathrm{1}+{p}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{p}\approx\mathrm{0}.\mathrm{2970}\:{or}\:\mathrm{3}.\mathrm{3665} \\ $$
Commented by mr W last updated on 04/Nov/21
$${an}\:{other}\:{way}: \\ $$$$\alpha=\frac{{a}}{{c}},\:\beta=\frac{{b}}{{c}} \\ $$$$\mathrm{tan}\:\theta=\frac{{p}}{\mathrm{1}}={p}=\frac{\mathrm{2tan}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}} \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }−\mathrm{1}}{{p}} \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{{c}−{b}}{{c}+{b}}=\frac{\mathrm{1}−\beta}{\mathrm{1}+\beta} \\ $$$$\beta=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}−\mathrm{1} \\ $$$$\beta=\frac{\mathrm{2}}{\mathrm{1}+\frac{\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }−\mathrm{1}}{\:\sqrt{\mathrm{2}{p}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}}}−\mathrm{1} \\ $$$$\alpha=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}−\mathrm{1} \\ $$$$\alpha=\frac{\mathrm{2}}{\mathrm{1}+\frac{{p}+\mathrm{1}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}}\sqrt{\mathrm{2}{p}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}}}−\mathrm{1} \\ $$$$\alpha+\beta=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\frac{{p}+\mathrm{1}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}{\:\mathrm{2}\sqrt{{p}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}}}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }−\mathrm{1}}{\:\sqrt{\mathrm{2}}\sqrt{{p}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by MJS_new last updated on 04/Nov/21
$$\mathrm{this}\:\mathrm{last}\:\mathrm{blue}\:\mathrm{equation}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{exactly} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{not}\:“\mathrm{nice}'' \\ $$
Commented by mr W last updated on 04/Nov/21
$${wow}!\:{i}\:{didn}'{t}\:{expect}\:{that}\:{it}\:{can}\:{be}\:{solved} \\ $$$${exactly}. \\ $$
Commented by MJS_new last updated on 04/Nov/21
$$\mathrm{I}\:\mathrm{will}\:\mathrm{type}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{as}\:\mathrm{soon}\:\mathrm{as}\:\mathrm{I} \\ $$$$\mathrm{have}\:\mathrm{the}\:\mathrm{time}… \\ $$
Commented by MJS_new last updated on 05/Nov/21
$$\mathrm{let}\:{t}={p}+\sqrt{{p}^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow\:{p}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}};\:\mathrm{we}'\mathrm{re}\:\mathrm{looking} \\ $$$$\mathrm{for}\:{p}>\mathrm{0}\:\Rightarrow\:{t}>\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{blue}\:\mathrm{equation}\:\mathrm{now}\:\mathrm{becomes} \\ $$$$\frac{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{1}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}+\frac{\mathrm{2}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\mathrm{2}}\left({t}−\mathrm{1}\right)+\mathrm{2}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{this}\:\mathrm{transforms}\:\mathrm{to} \\ $$$$\left(\sqrt{\mathrm{2}}{t}+\mathrm{2}+\sqrt{\mathrm{2}}\right)\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}=\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{2}}{t}+\mathrm{2}+\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\mathrm{squaring}\:\&\:\mathrm{transforming} \\ $$$${t}^{\mathrm{4}} +\mathrm{2}\left(\mathrm{1}−\mathrm{4}\sqrt{\mathrm{2}}\right){t}^{\mathrm{3}} +\left(\mathrm{9}+\mathrm{8}\sqrt{\mathrm{2}}\right){t}^{\mathrm{2}} −\mathrm{8}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right){t}+\mathrm{8}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\mathrm{let}\:{u}={t}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${u}^{\mathrm{4}} −\left(\frac{\mathrm{81}}{\mathrm{2}}−\mathrm{20}\sqrt{\mathrm{2}}\right){u}^{\mathrm{2}} +\mathrm{8}\left(\mathrm{17}−\mathrm{15}\sqrt{\mathrm{2}}\right){u}−\frac{\mathrm{3231}}{\mathrm{16}}+\mathrm{127}\sqrt{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{get} \\ $$$$\left({u}^{\mathrm{2}} −\alpha{u}−\beta\right)\left({u}^{\mathrm{2}} +\alpha{u}−\gamma\right)=\mathrm{0} \\ $$$$\mathrm{with} \\ $$$$\alpha=\mathrm{2}\sqrt{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\beta=\frac{\mathrm{33}}{\mathrm{4}}−\mathrm{6}\sqrt{\mathrm{2}}+\left(\mathrm{8}−\mathrm{3}\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\sqrt{\mathrm{2}}} \\ $$$$\gamma=\frac{\mathrm{33}}{\mathrm{4}}−\mathrm{6}\sqrt{\mathrm{2}}−\left(\mathrm{8}−\mathrm{3}\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\sqrt{\mathrm{2}}} \\ $$$$\mathrm{the}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{this}\:\mathrm{are} \\ $$$${u}=\frac{\alpha}{\mathrm{2}}\pm\frac{\sqrt{\alpha^{\mathrm{2}} +\mathrm{4}\beta}}{\mathrm{2}} \\ $$$${t}={u}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${p}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}} \\ $$$$\mathrm{I}\:\mathrm{get}\:\mathrm{for}\:{p}_{\mathrm{1}} >\mathrm{1}\:\left[{p}_{\mathrm{2}} ={p}_{\mathrm{1}} ^{−\mathrm{1}} \right] \\ $$$${p}_{\mathrm{1}} =−\frac{\mathrm{2}−\mathrm{7}\sqrt{\mathrm{2}}}{\mathrm{8}}−\frac{\left(\mathrm{2}−\mathrm{9}\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\sqrt{\mathrm{2}}}}{\mathrm{16}}+\frac{\mathrm{8}−\mathrm{2}\sqrt{\mathrm{2}}−\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\sqrt{\mathrm{2}}}}{\mathrm{16}}\sqrt{\mathrm{57}−\mathrm{32}\sqrt{\mathrm{2}}+\mathrm{4}\left(\mathrm{8}−\mathrm{3}\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\sqrt{\mathrm{2}}}} \\ $$$${p}_{\mathrm{1}} \approx\mathrm{3}.\mathrm{36651284} \\ $$$${p}_{\mathrm{2}} \approx.\mathrm{297043275} \\ $$
Commented by mr W last updated on 05/Nov/21
$${really}\:{magic}!\:{thanks}\:{alot}! \\ $$
Commented by ajfour last updated on 05/Nov/21
$${thank}\:{you}\:{mrW}\:{sir}\:{n}\:{MjS}\:{sir}! \\ $$