Menu Close

Question-158455




Question Number 158455 by mnjuly1970 last updated on 04/Nov/21
Answered by MJS_new last updated on 05/Nov/21
(√(x⌊x⌋+x^2 ⌊x−1⌋))=(√(x((x+1)⌊x⌋−x)))  g(x)=x((x+1)⌊x⌋−x)=0 ⇔ x=0∨(x+1)⌊x⌋=x  ⇒ x=0∨x=−(1/2)  but (lim_(x→1^− ) g(x) =−1) ≠ (lim_(x→1^+ ) g(x) =1)  ⇒ f(x) defined for −(1/2)≤x≤0 ∨ x≥1
$$\sqrt{{x}\lfloor{x}\rfloor+{x}^{\mathrm{2}} \lfloor{x}−\mathrm{1}\rfloor}=\sqrt{{x}\left(\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor−{x}\right)} \\ $$$${g}\left({x}\right)={x}\left(\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor−{x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}=\mathrm{0}\vee\left({x}+\mathrm{1}\right)\lfloor{x}\rfloor={x} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\vee{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{but}\:\left(\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}{g}\left({x}\right)\:=−\mathrm{1}\right)\:\neq\:\left(\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{g}\left({x}\right)\:=\mathrm{1}\right) \\ $$$$\Rightarrow\:{f}\left({x}\right)\:\mathrm{defined}\:\mathrm{for}\:−\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\mathrm{0}\:\vee\:{x}\geqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *