Menu Close

Question-158472




Question Number 158472 by ajfour last updated on 04/Nov/21
Commented by ajfour last updated on 05/Nov/21
Find p(q). Given △ sides            p,q  and c=a+b.
$${Find}\:{p}\left({q}\right).\:{Given}\:\bigtriangleup\:{sides} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p},{q}\:\:{and}\:{c}={a}+{b}. \\ $$
Answered by ajfour last updated on 05/Nov/21
Let bottom side be q instead  of 1.  ............equations...............  (b/c)=(s/(q−c))  ⇒  s=(b/c)(q−c)  similarly      t=(a/c)(p−c)  ((√(s^2 +b^2 ))+b+c)cos ((π/8)−(θ/2))=q−c  ((√(t^2 +a^2 ))+a+c)cos ((π/4)−(θ/2))= p−c  c=a+b  .............workings...............                              ⇓            .........................
$${Let}\:{bottom}\:{side}\:{be}\:{q}\:{instead} \\ $$$${of}\:\mathrm{1}. \\ $$$$…………{equations}…………… \\ $$$$\frac{{b}}{{c}}=\frac{{s}}{{q}−{c}}\:\:\Rightarrow\:\:{s}=\frac{{b}}{{c}}\left({q}−{c}\right) \\ $$$${similarly}\:\:\:\:\:\:{t}=\frac{{a}}{{c}}\left({p}−{c}\right) \\ $$$$\left(\sqrt{{s}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{b}+{c}\right)\mathrm{cos}\:\left(\frac{\pi}{\mathrm{8}}−\frac{\theta}{\mathrm{2}}\right)={q}−{c} \\ $$$$\left(\sqrt{{t}^{\mathrm{2}} +{a}^{\mathrm{2}} }+{a}+{c}\right)\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)=\:{p}−{c} \\ $$$${c}={a}+{b} \\ $$$$………….{workings}…………… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Downarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:……………………. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *