Menu Close

Question-158674




Question Number 158674 by cortano last updated on 07/Nov/21
Commented by tounghoungko last updated on 07/Nov/21
I_1 =∫ (dx/( (x)^(1/3) +(x)^(1/4) )) ; x=r^(12)   I_1 =∫ ((12r^(11) )/(r^4 +r^3 )) dr=∫ ((12r^8 )/(r+1)) dr
I1=dxx3+x4;x=r12I1=12r11r4+r3dr=12r8r+1dr
Commented by tounghoungko last updated on 07/Nov/21
I_2 =∫ ((ln (1+(x)^(1/6) ))/( (x)^(1/3) +(√x))) dx   let x=h^6  ⇒dx=6h^5  dh  I_2 =∫ ((ln (1+h))/(h^2 +h^3 )) (6h^5 )dh  I_2 =∫ ((ln (1+h))/(1+h)) (6h^3  dh)  let u=ln (1+h)⇒du=(dh/(1+h))  ⇒h=e^u −1  I_2 =6∫(e^u −1)^3 u du  I_2 =6 ∫u(e^(3u) −3e^(2u) +3e^u −1)du
I2=ln(1+x6)x3+xdxletx=h6dx=6h5dhI2=ln(1+h)h2+h3(6h5)dhI2=ln(1+h)1+h(6h3dh)letu=ln(1+h)du=dh1+hh=eu1I2=6(eu1)3uduI2=6u(e3u3e2u+3eu1)du

Leave a Reply

Your email address will not be published. Required fields are marked *