Menu Close

Question-158674




Question Number 158674 by cortano last updated on 07/Nov/21
Commented by tounghoungko last updated on 07/Nov/21
I_1 =∫ (dx/( (x)^(1/3) +(x)^(1/4) )) ; x=r^(12)   I_1 =∫ ((12r^(11) )/(r^4 +r^3 )) dr=∫ ((12r^8 )/(r+1)) dr
$${I}_{\mathrm{1}} =\int\:\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{4}}]{{x}}}\:;\:{x}={r}^{\mathrm{12}} \\ $$$${I}_{\mathrm{1}} =\int\:\frac{\mathrm{12}{r}^{\mathrm{11}} }{{r}^{\mathrm{4}} +{r}^{\mathrm{3}} }\:{dr}=\int\:\frac{\mathrm{12}{r}^{\mathrm{8}} }{{r}+\mathrm{1}}\:{dr} \\ $$$$ \\ $$
Commented by tounghoungko last updated on 07/Nov/21
I_2 =∫ ((ln (1+(x)^(1/6) ))/( (x)^(1/3) +(√x))) dx   let x=h^6  ⇒dx=6h^5  dh  I_2 =∫ ((ln (1+h))/(h^2 +h^3 )) (6h^5 )dh  I_2 =∫ ((ln (1+h))/(1+h)) (6h^3  dh)  let u=ln (1+h)⇒du=(dh/(1+h))  ⇒h=e^u −1  I_2 =6∫(e^u −1)^3 u du  I_2 =6 ∫u(e^(3u) −3e^(2u) +3e^u −1)du
$${I}_{\mathrm{2}} =\int\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}}\right)}{\:\sqrt[{\mathrm{3}}]{{x}}+\sqrt{{x}}}\:{dx} \\ $$$$\:{let}\:{x}={h}^{\mathrm{6}} \:\Rightarrow{dx}=\mathrm{6}{h}^{\mathrm{5}} \:{dh} \\ $$$${I}_{\mathrm{2}} =\int\:\frac{\mathrm{ln}\:\left(\mathrm{1}+{h}\right)}{{h}^{\mathrm{2}} +{h}^{\mathrm{3}} }\:\left(\mathrm{6}{h}^{\mathrm{5}} \right){dh} \\ $$$${I}_{\mathrm{2}} =\int\:\frac{\mathrm{ln}\:\left(\mathrm{1}+{h}\right)}{\mathrm{1}+{h}}\:\left(\mathrm{6}{h}^{\mathrm{3}} \:{dh}\right) \\ $$$${let}\:{u}=\mathrm{ln}\:\left(\mathrm{1}+{h}\right)\Rightarrow{du}=\frac{{dh}}{\mathrm{1}+{h}} \\ $$$$\Rightarrow{h}={e}^{{u}} −\mathrm{1} \\ $$$${I}_{\mathrm{2}} =\mathrm{6}\int\left({e}^{{u}} −\mathrm{1}\right)^{\mathrm{3}} {u}\:{du} \\ $$$${I}_{\mathrm{2}} =\mathrm{6}\:\int{u}\left({e}^{\mathrm{3}{u}} −\mathrm{3}{e}^{\mathrm{2}{u}} +\mathrm{3}{e}^{{u}} −\mathrm{1}\right){du} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *