Menu Close

Question-158843




Question Number 158843 by mnjuly1970 last updated on 09/Nov/21
Commented by mr W last updated on 09/Nov/21
(1)  not true!  example: x=4, y=6  6x+11y=24+66=90 ≡0 mod(30)  but x+7y=4+42=46 ≢0 mod(30)
(1)nottrue!example:x=4,y=66x+11y=24+66=900mod(30)butx+7y=4+42=460mod(30)
Commented by mnjuly1970 last updated on 09/Nov/21
  yes  you are right... thx mr W
yesyouarerightthxmrW
Answered by Rasheed.Sindhi last updated on 09/Nov/21
Q_2  5^9 +64=(5^3 )^3 +(4)^3        =(5^3 +4)( (5^3 )^2 −(5^3 )(4)+(4)^2  )     =(125+4)(15625−500+16)     =129×15141  ∴ 5^9 +64 is composite.
Q259+64=(53)3+(4)3=(53+4)((53)2(53)(4)+(4)2)=(125+4)(15625500+16)=129×1514159+64iscomposite.
Answered by Rasheed.Sindhi last updated on 09/Nov/21
Q_3   N=n^5 −5n^3 +4n  =(n−2)(n−1)(n)(n+1)(n+2)  (i)•  n modulo 3:   n=3k: Obviously 3 ∣ n⇒3 ∣ N  n=3k+1: n+2=3k+3⇒3 ∣ (n+2)⇒3 ∣ N  n=3k+2: n+1=3k+3⇒3 ∣ (n+1)⇒3 ∣ N  ∴ 3 ∣ N...........................A  (ii)• n modulo 2  n=2k: N=(2k−1)(2k−2)(2k)(2k+1)(2k+2)      =8(4k^3 −5k^2 +k)⇒8 ∣N  n=2k+1:N=(2k)(2k−1)(2k+1)(2k+2)(2k+3)  =32k^5 +80k^4 +40k^3 −20k^2 −12k  =8(4k^5 +10k^4 +5k^3 −((k(5k+3))/2) )  Can be proved that k(5k+3) is   divisible by 2 in both cases:(i)k∈E  or (ii)k∈O  ∴ 8 ∣ N................................B  (iii)• n modulo 5:  n=5k⇒5 ∣ n⇒5 ∣ N  n=5k+1⇒n−1=5k⇒5 ∣ n−1⇒5 ∣ N  n=5k+2⇒n−2=5k⇒5 ∣ n−2⇒5 ∣ N  n=5k+3⇒n+2=5(k+1)⇒5 ∣ n+2⇒5 ∣ N  n=5k+4⇒n+1=5(k+1)⇒5 ∣ n+1⇒n ∣ N  ∴ 5 ∣ N..............................C  A & B & C⇒120 ∣ N
Q3N=n55n3+4n=(n2)(n1)(n)(n+1)(n+2)(i)nmodulo3:n=3k:Obviously3n3Nn=3k+1:n+2=3k+33(n+2)3Nn=3k+2:n+1=3k+33(n+1)3N3NA(ii)nmodulo2n=2k:N=(2k1)(2k2)(2k)(2k+1)(2k+2)=8(4k35k2+k)8Nn=2k+1:N=(2k)(2k1)(2k+1)(2k+2)(2k+3)=32k5+80k4+40k320k212k=8(4k5+10k4+5k3k(5k+3)2)Canbeprovedthatk(5k+3)isdivisibleby2inbothcases:(i)kEor(ii)kO8N..B(iii)nmodulo5:n=5k5n5Nn=5k+1n1=5k5n15Nn=5k+2n2=5k5n25Nn=5k+3n+2=5(k+1)5n+25Nn=5k+4n+1=5(k+1)5n+1nN5NCA&B&C120N
Commented by mnjuly1970 last updated on 09/Nov/21
thanks alot sir
thanksalotsir

Leave a Reply

Your email address will not be published. Required fields are marked *