Question Number 158973 by mnjuly1970 last updated on 11/Nov/21
Answered by qaz last updated on 11/Nov/21
$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \frac{\mathrm{dx}}{\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}−\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \frac{\mathrm{x}}{\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}\right)\mathrm{d}\left(\mathrm{tan}\:\mathrm{x}\right)−\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{xd}\left(\mathrm{tan}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\right) \\ $$$$=\frac{\pi}{\mathrm{4}}\centerdot\left[\mathrm{tan}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} −\mathrm{x}\left[\mathrm{tan}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} +\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left(\mathrm{tan}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}\right)\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{3}}−\frac{\pi}{\mathrm{3}}+\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}\:\mathrm{x}\left(\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{K}=\frac{\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{6}}}{\frac{\pi}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{6}}}=\frac{\mathrm{2ln2}+\mathrm{1}}{\mathrm{2}\pi−\mathrm{2ln2}−\mathrm{1}} \\ $$