Question Number 158988 by cortano last updated on 11/Nov/21
Answered by Rasheed.Sindhi last updated on 11/Nov/21
$$\mathcal{T}{he}\:{graph}\:{of}\:{f}\left({x}\right)\:{intersects}\:{y}=\mathrm{2}{x}−\mathrm{1} \\ $$$${at}\:{x}=\mathrm{1},\mathrm{2},\mathrm{3} \\ $$$$\therefore\:\mathcal{T}{he}\:{points}\:{of}\:{intersections}: \\ $$$$\:\:\:\:\:\:\left(\mathrm{1},\mathrm{2}\left(\mathrm{1}\right)−\mathrm{1}\right)\:,\:\left(\mathrm{2},\mathrm{2}\left(\mathrm{2}\right)−\mathrm{1}\right)\:\&\left(\mathrm{3},\mathrm{2}\left(\mathrm{3}\right)−\mathrm{1}\right) \\ $$$$\:\:\:{Or}\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{2},\mathrm{3}\right)\:\&\:\left(\mathrm{3},\mathrm{5}\right)\: \\ $$$$\:\:\:\:{also}\:{the}\:{points}\:{on}\:{f}\left({x}\right): \\ $$$$\left(\mathrm{1},\mathrm{1}\right): \\ $$$${f}\left(\mathrm{1}\right)=\left(\mathrm{1}\right)^{\mathrm{4}} +{a}\left(\mathrm{1}\right)^{\mathrm{3}} +{b}\left(\mathrm{1}\right)^{\mathrm{2}} +{c}\left(\mathrm{1}\right)+{d}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow{a}+{b}+{c}+{d}=\mathrm{0}…………{A} \\ $$$$\left(\mathrm{2},\mathrm{3}\right): \\ $$$${f}\left(\mathrm{2}\right)=\left(\mathrm{2}\right)^{\mathrm{4}} +{a}\left(\mathrm{2}\right)^{\mathrm{3}} +{b}\left(\mathrm{2}\right)^{\mathrm{2}} +{c}\left(\mathrm{2}\right)+{d}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{8}{a}+\mathrm{4}{b}+\mathrm{2}{c}+{d}=−\mathrm{13}…..{B} \\ $$$$\left(\mathrm{3},\mathrm{5}\right): \\ $$$${f}\left(\mathrm{3}\right)=\left(\mathrm{3}\right)^{\mathrm{4}} +{a}\left(\mathrm{3}\right)^{\mathrm{3}} +{b}\left(\mathrm{3}\right)^{\mathrm{2}} +{c}\left(\mathrm{3}\right)+{d}=\mathrm{5} \\ $$$$\:\:\:\:\Rightarrow\mathrm{27}{a}+\mathrm{9}{b}+\mathrm{3}{c}+{d}=−\mathrm{76}……..{C} \\ $$$${f}\left(\mathrm{0}\right)={d} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{4}^{\mathrm{4}} +{a}\left(\mathrm{4}\right)^{\mathrm{3}} +{b}\left(\mathrm{4}\right)^{\mathrm{2}} +{c}\left(\mathrm{4}\right)+{d}={e}\left({say}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{256}+\mathrm{64}{a}+\mathrm{16}{b}+\mathrm{4}{c}+{d} \\ $$$${f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right)=\mathrm{256}+\mathrm{64}{a}+\mathrm{16}{b}+\mathrm{4}{c}+\mathrm{2}{d} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{256}+\mathrm{64}{a}+\mathrm{16}{b}+\mathrm{4}{c}+\mathrm{2}{d} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{256}+\mathrm{64}{a}+\mathrm{16}{b}+\mathrm{2}\left(−\mathrm{13}−\mathrm{8}{a}−\mathrm{4}{b}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{230}+\mathrm{48}{a}+\mathrm{8}{b} \\ $$$$\:{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right)=\mathrm{230}+\mathrm{8}\left(\mathrm{6}{a}+{b}\right) \\ $$$${B}−{A}:\mathrm{7}{a}+\mathrm{3}{b}+{c}=−\mathrm{13}………..{D} \\ $$$${C}−{B}:\:\mathrm{19}{a}+\mathrm{5}{b}+{c}=−\mathrm{63}……..{E} \\ $$$${E}−{D}:\mathrm{12}{a}+\mathrm{2}{b}=−\mathrm{50}\Rightarrow\mathrm{6}{a}+{b}=−\mathrm{25} \\ $$$$\:{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right)=\mathrm{230}+\mathrm{8}\left(\mathrm{6}{a}+{b}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{230}+\mathrm{8}\left(−\mathrm{25}\right)=\mathrm{30} \\ $$
Commented by cortano last updated on 13/Nov/21
$${thank}\:{you}\:{sir} \\ $$
Answered by mr W last updated on 11/Nov/21
$${say}\:{g}\left({x}\right)={f}\left({x}\right)−\left(\mathrm{2}{x}−\mathrm{1}\right) \\ $$$${g}\left(\mathrm{1}\right)={g}\left(\mathrm{2}\right)={g}\left(\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{g}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}+{p}\right) \\ $$$$\Rightarrow{f}\left({x}\right)−\left(\mathrm{2}{x}−\mathrm{1}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}+{p}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}+{p}\right)+\mathrm{2}{x}−\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)=\left(\mathrm{0}−\mathrm{1}\right)\left(\mathrm{0}−\mathrm{2}\right)\left(\mathrm{0}−\mathrm{3}\right)\left(\mathrm{0}+{p}\right)+\mathrm{2}×\mathrm{0}−\mathrm{1} \\ $$$$\Rightarrow{f}\left(\mathrm{0}\right)=−\mathrm{6}{p}−\mathrm{1} \\ $$$${f}\left(\mathrm{4}\right)=\left(\mathrm{4}−\mathrm{1}\right)\left(\mathrm{4}−\mathrm{2}\right)\left(\mathrm{4}−\mathrm{3}\right)\left(\mathrm{4}+{p}\right)+\mathrm{2}×\mathrm{4}−\mathrm{1} \\ $$$$\Rightarrow{f}\left(\mathrm{4}\right)=\mathrm{31}+\mathrm{6}{p} \\ $$$${f}\left(\mathrm{0}\right)+{f}\left(\mathrm{4}\right)=−\mathrm{6}{p}−\mathrm{1}+\mathrm{31}+\mathrm{6}{p}=\mathrm{30} \\ $$
Commented by Rasheed.Sindhi last updated on 11/Nov/21
$${A}\:{Novel}\:{Method}! \\ $$$${Wonderful}\:\mathcal{S}{ir}! \\ $$
Commented by mr W last updated on 12/Nov/21
$${thanks}\:{sir}!\:{we}\:{see}\:{again}: \\ $$$${many}\:{roads}\:{lead}\:{to}\:{Rome}! \\ $$
Commented by Rasheed.Sindhi last updated on 12/Nov/21
$${Of}\:{course}\:{sir}! \\ $$$${I}'{m}\:{always}\:{interested}\:{in}\:'{many} \\ $$$${roads}'\:\:{that}\:{is}\:{variety}\:{of}\:{solutions}. \\ $$$${But}\:{after}\:{all}\:{some}\:{roads}\:{are}\:{better} \\ $$$${than}\:{others}! \\ $$
Commented by cortano last updated on 13/Nov/21
$${nice} \\ $$