Menu Close

Question-159021




Question Number 159021 by Abdissalammjr last updated on 11/Nov/21
Answered by mkam last updated on 11/Nov/21
  (dy/dx)−((2x)/(x+4)) y = −0.4    p(x) = − ((2x)/(x+4)) , Q(x)= −0.4    (i.f)= e^(∫p(x)dx) = e^(∫ −((2x)/(x+4)) dx) = e^(−2∫ (1−(4/(x+4)))dx) = e^(−2x +ln(x+4)^8 ) =(x+4)^8  . e^(−2x)     y = ((∫ (i.f). Q(x) dx)/((i.f))) = ((−0.4∫ (x+4)^8  . e^(−2x)  dx)/((x+4)^8  . e^(−2x) ))      now complete sir
$$ \\ $$$$\frac{{dy}}{{dx}}−\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:{y}\:=\:−\mathrm{0}.\mathrm{4} \\ $$$$ \\ $$$${p}\left({x}\right)\:=\:−\:\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:,\:{Q}\left({x}\right)=\:−\mathrm{0}.\mathrm{4} \\ $$$$ \\ $$$$\left({i}.{f}\right)=\:{e}^{\int{p}\left({x}\right){dx}} =\:{e}^{\int\:−\frac{\mathrm{2}{x}}{{x}+\mathrm{4}}\:{dx}} =\:{e}^{−\mathrm{2}\int\:\left(\mathrm{1}−\frac{\mathrm{4}}{{x}+\mathrm{4}}\right){dx}} =\:{e}^{−\mathrm{2}{x}\:+{ln}\left({x}+\mathrm{4}\right)^{\mathrm{8}} } =\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} \\ $$$$ \\ $$$${y}\:=\:\frac{\int\:\left({i}.{f}\right).\:{Q}\left({x}\right)\:{dx}}{\left({i}.{f}\right)}\:=\:\frac{−\mathrm{0}.\mathrm{4}\int\:\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} \:{dx}}{\left({x}+\mathrm{4}\right)^{\mathrm{8}} \:.\:{e}^{−\mathrm{2}{x}} } \\ $$$$ \\ $$$$ \\ $$$${now}\:{complete}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *