Menu Close

Question-159152




Question Number 159152 by HongKing last updated on 13/Nov/21
Answered by mr W last updated on 13/Nov/21
let x=n+f with n∈Z, 0≤f<1  RHS=n+2022=LHS≥2021n   ⇒n≤((2022)/(2020)) ⇒n≤1   ...(i)  RHS=n+2022=LHS<2021(n+1)   ⇒n>(1/(2020)) ⇒n≥1   ...(ii)  ⇒n=1  ⇒x=1+f  1+[f]+1+[f+(1/(2021))]+1+[f+(2/(2021))]+...+1+[f+((2020)/(2021))]=1+2022  2021+[f]+[f+(1/(2021))]+[f+(2/(2021))]+...+[f+((2020)/(2021))]=1+2022  [f]+[f+(1/(2021))]+[f+(2/(2021))]+...+[f+((2018)/(2021))]+[f+((2019)/(2021))]+[f+((2020)/(2021))]=2  each of the last two terms should be 1  and all other terms before them   should be zero.  1≤f+((2019)/(2021)) ∧ f+((2018)/(2021))<1 ⇒(2/(2021))≤f<(3/(2021))  ⇒solution is 1+(2/(2021))≤x<1+(3/(2021))
letx=n+fwithnZ,0f<1RHS=n+2022=LHS2021nn20222020n1(i)RHS=n+2022=LHS<2021(n+1)n>12020n1(ii)n=1x=1+f1+[f]+1+[f+12021]+1+[f+22021]++1+[f+20202021]=1+20222021+[f]+[f+12021]+[f+22021]++[f+20202021]=1+2022[f]+[f+12021]+[f+22021]++[f+20182021]+[f+20192021]+[f+20202021]=2eachofthelasttwotermsshouldbe1andallothertermsbeforethemshouldbezero.1f+20192021f+20182021<122021f<32021solutionis1+22021x<1+32021
Commented by HongKing last updated on 13/Nov/21
Very nice solution thank you so much  my dear Ser
VerynicesolutionthankyousomuchmydearSer
Commented by Tawa11 last updated on 14/Nov/21
Great sir.
Greatsir.

Leave a Reply

Your email address will not be published. Required fields are marked *