Question-159152 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 159152 by HongKing last updated on 13/Nov/21 Answered by mr W last updated on 13/Nov/21 letx=n+fwithn∈Z,0⩽f<1RHS=n+2022=LHS⩾2021n⇒n⩽20222020⇒n⩽1…(i)RHS=n+2022=LHS<2021(n+1)⇒n>12020⇒n⩾1…(ii)⇒n=1⇒x=1+f1+[f]+1+[f+12021]+1+[f+22021]+…+1+[f+20202021]=1+20222021+[f]+[f+12021]+[f+22021]+…+[f+20202021]=1+2022[f]+[f+12021]+[f+22021]+…+[f+20182021]+[f+20192021]+[f+20202021]=2eachofthelasttwotermsshouldbe1andallothertermsbeforethemshouldbezero.1⩽f+20192021∧f+20182021<1⇒22021⩽f<32021⇒solutionis1+22021⩽x<1+32021 Commented by HongKing last updated on 13/Nov/21 VerynicesolutionthankyousomuchmydearSer Commented by Tawa11 last updated on 14/Nov/21 Greatsir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-28076Next Next post: lim-x-x-log-e-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.