Menu Close

Question-15916




Question Number 15916 by tawa tawa last updated on 15/Jun/17
Commented by tawa tawa last updated on 15/Jun/17
6a and b
6aandb
Commented by tawa tawa last updated on 15/Jun/17
please help.
pleasehelp.
Answered by RasheedSoomro last updated on 16/Jun/17
6(b)   f(x)=((x+1)/((2x−1)(2x+1)(2x+3)))           show that                 16f(x)=(3/(2x−1))−(2/(2x+1))−(1/(2x+3))  Hence or otherwise show tbat the sum of the first  n terms of the series           (2/(1×3×5))+(3/(3×5×7))+(4/(5×7×9))+....        is                               (5/(24))−((4n+5)/(8(2n+1)(2n+3)))  −−−−−−−−−−−−−−−−−−−−−−−  A TRY...  Let  ((x+1)/((2x−1)(2x+1)(2x+3)))=(A/(2x−1))+(B/(2x+1))+(C/(2x+3))  A(2x+1)(2x+3)+B(2x−1)(2x+3)+C(2x−1)(2x+1)                                                                                                         =x+1  ^• Let 2x−1=0⇒x=1/2:  A( 2((1/2))+1 )( 2((1/2))+3 )=(1/2)+1  8A=(3/2)⇒A=(3/(16))  ^• Let 2x+1=0⇒x=−1/2  B( 2(−(1/2))−1 )( 2(−(1/2))+3 )=−(1/2)+1  −4B=(1/2)⇒B=−(1/8)  ^• Let x=2x+3=0⇒x=−3/2   C( 2(−(3/2))−1 )( 2(−(3/2))+1 )=−(3/2)+1  8C=−(1/2)⇒C=−(1/(16))  Hence     ((x+1)/((2x−1)(2x+1)(2x+3)))=(3/(16(2x−1)))−(1/(8(2x+1)))−(1/(16(2x+3)))  16 f(x)=(3/(2x−1))−(2/(2x+1))−(1/(2x+3))  Now,    Σ_(x=1) ^(n) f(x)=Σ_(x=1) ^(n)  (((x+1)/((2x−1)(2x+1)(2x+3))))                   = (2/(1×3×5))+(3/(3×5×7))+(4/(5×7×9))+....                   =Σ_(x=1) ^(n) ((3/(16(2x−1)))−(1/(8(2x+1)))−(1/(16(2x+3))))                   =(3/(16 ))Σ_(x=1) ^(n)   ((1/(  2x−1)))−(1/8)Σ_( x=1   ) ^(n) ((1/(2x+1)))−(1/(16))Σ_(  x=1  1) ^(n) ((1/(2x+3)))                 Can′t continue further. I′m sorry!
6(b)f(x)=x+1(2x1)(2x+1)(2x+3)showthat16f(x)=32x122x+112x+3Henceorotherwiseshowtbatthesumofthefirstntermsoftheseries21×3×5+33×5×7+45×7×9+.is5244n+58(2n+1)(2n+3)ATRYLetx+1(2x1)(2x+1)(2x+3)=A2x1+B2x+1+C2x+3A(2x+1)(2x+3)+B(2x1)(2x+3)+C(2x1)(2x+1)=x+1Let2x1=0x=1/2:A(2(12)+1)(2(12)+3)=12+18A=32A=316Let2x+1=0x=1/2B(2(12)1)(2(12)+3)=12+14B=12B=18Letx=2x+3=0x=3/2C(2(32)1)(2(32)+1)=32+18C=12C=116Hencex+1(2x1)(2x+1)(2x+3)=316(2x1)18(2x+1)116(2x+3)16f(x)=32x122x+112x+3Now,Σnx=1f(x)=Σnx=1(x+1(2x1)(2x+1)(2x+3))=21×3×5+33×5×7+45×7×9+.=Σnx=1(316(2x1)18(2x+1)116(2x+3))=316Σnx=1(12x1)18Σnx=1(12x+1)116Σnx=11(12x+3)Cantcontinuefurther.Imsorry!
Commented by tawa tawa last updated on 15/Jun/17
Am with you sir. thanks for your help.
Amwithyousir.thanksforyourhelp.
Commented by mrW1 last updated on 16/Jun/17
I′ll try to continue:  =(3/(16 ))Σ_(x=1) ^(n)   ((1/(  2x−1)))−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(2/(16 ))Σ_(x=1) ^(n)   ((1/(  2x−1)))+(1/(16 ))Σ_(x=1) ^n   ((1/(  2x−1)))−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(1/(8 ))Σ_(x=1) ^(n)   ((1/(  2x−1)))+(1/(16 ))Σ_(x=1) ^n   ((1/(  2x−1)))−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(1/(8 ))Σ_(t=0) ^(n−1)   ((1/(  2t+1)))+(1/(16 ))Σ_(t=−1) ^(n−2)   ((1/(  2t+3)))−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(1/(8 ))Σ_(t=1) ^(n)   ((1/(  2t+1)))+(1/8)[(1/(2×0+1))−(1/(2n+1))]+(1/(16 ))Σ_(t=1) ^n   ((1/(  2t+3)))+(1/(16))[(1/(2(−1)+3))+(1/(2(0)+3))−(1/(2(n−1)+3))−(1/(2(n)+3))]−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(1/(8 ))Σ_(x=1) ^(n)   ((1/(  2x+1)))+(1/8)[(1/(2×0+1))−(1/(2n+1))]+(1/(16 ))Σ_(x=1) ^n   ((1/(  2x+3)))+(1/(16))[(1/(2(−1)+3))+(1/(2(0)+3))−(1/(2(n−1)+3))−(1/(2(n)+3))]−(1/8)Σ_( x=1   ) ^(n)  ((1/(2x+1)))−(1/(16))Σ_(  x=1) ^(n)   ((1/(2x+3)))  =(1/8)[(1/(2×0+1))−(1/(2n+1))]+(1/(16))[(1/(2(−1)+3))+(1/(2(0)+3))−(1/(2(n−1)+3))−(1/(2(n)+3))]  =(1/8)[1−(1/(2n+1))]+(1/(16))[1+(1/3)−(1/(2n+1))−(1/(2n+3))]  =(1/8)+(2/(8×3))−(1/(16))[(2/(2n+1))+(1/(2n+1))+(1/(2n+3))]  =(5/(24))−(1/(16))[(3/(2n+1))+(1/(2n+3))]  =(5/(24))−((4n+5)/(8(2n+1)(2n+3)))
Illtrytocontinue:=316Σnx=1(12x1)18Σnx=1(12x+1)116Σnx=1(12x+3)=216Σnx=1(12x1)+116nx=1(12x1)18Σnx=1(12x+1)116Σnx=1(12x+3)=18Σnx=1(12x1)+116nx=1(12x1)18Σnx=1(12x+1)116Σnx=1(12x+3)=18Σn1t=0(12t+1)+116n2t=1(12t+3)18Σnx=1(12x+1)116Σnx=1(12x+3)=18Σnt=1(12t+1)+18[12×0+112n+1]+116nt=1(12t+3)+116[12(1)+3+12(0)+312(n1)+312(n)+3]18Σnx=1(12x+1)116Σnx=1(12x+3)=18Σnx=1(12x+1)+18[12×0+112n+1]+116nx=1(12x+3)+116[12(1)+3+12(0)+312(n1)+312(n)+3]18Σnx=1(12x+1)116Σnx=1(12x+3)=18[12×0+112n+1]+116[12(1)+3+12(0)+312(n1)+312(n)+3]=18[112n+1]+116[1+1312n+112n+3]=18+28×3116[22n+1+12n+1+12n+3]=524116[32n+1+12n+3]=5244n+58(2n+1)(2n+3)
Commented by tawa tawa last updated on 16/Jun/17
I really appreciate your time. God bless you sir. Rasheed
Ireallyappreciateyourtime.Godblessyousir.Rasheed
Commented by tawa tawa last updated on 16/Jun/17
Wow sir MrW1 , i really appreciate sir. God bless you sir.
WowsirMrW1,ireallyappreciatesir.Godblessyousir.
Commented by tawa tawa last updated on 16/Jun/17
Sir what of the  6a   and   the deduce that sum to infinity is  (5/(24))
Sirwhatofthe6aandthededucethatsumtoinfinityis524
Commented by mrW1 last updated on 16/Jun/17
sorry, I don′t understand what is meant  in question 6a.
sorry,Idontunderstandwhatismeantinquestion6a.
Commented by RasheedSoomro last updated on 16/Jun/17
^• Have learnt something from you mrW1. Thank you Sir.  ^• Miss tawa, your question became means to increase my      knowledge. Thank you for this.
HavelearntsomethingfromyoumrW1.ThankyouSir.Misstawa,yourquestionbecamemeanstoincreasemyknowledge.Thankyouforthis.
Commented by mrW1 last updated on 16/Jun/17
Mr. Rasheed, you are welcome Sir!
Mr.Rasheed,youarewelcomeSir!
Answered by tawa tawa last updated on 15/Jun/17
Please help.
Pleasehelp.

Leave a Reply

Your email address will not be published. Required fields are marked *