Menu Close

Question-159189




Question Number 159189 by mathlove last updated on 14/Nov/21
Answered by Rasheed.Sindhi last updated on 16/Nov/21
Let (A/B)=x  x+(1/x)=1; x^(2019) +x^(−2019) =?  ▶x+(1/x)=1  ⇒x^2 −x+1=0⇒(x+1)(x^2 −x+1)=0  ⇒x^3 +1=0⇒x^3 =−1  ∴ x is cuberoot of −1  ∴ x=−1,−ω,−ω^2   −1 is a root of x+1=0  −ω,−ω^2  are the roots of x^2 −x+1=0  where ω  is cuberoot of unity.  ▶x^(2019) +x^(−2019) =(−ω)^(2019) +(−ω)^(−2019)   −(ω^(2019) +ω^(−2019) )=−({(ω)^3 }^(673) +{(ω)^3 }^(−673) )  =−(1^(673) +1^(673) )=−2  ((A/B))^(2019) +((B/A))^(2019) =−2
LetAB=xx+1x=1;x2019+x2019=?x+1x=1x2x+1=0(x+1)(x2x+1)=0x3+1=0x3=1xiscuberootof1x=1,ω,ω21isarootofx+1=0ω,ω2aretherootsofx2x+1=0whereωiscuberootofunity.x2019+x2019=(ω)2019+(ω)2019(ω2019+ω2019)=({(ω)3}673+{(ω)3}673)=(1673+1673)=2(AB)2019+(BA)2019=2

Leave a Reply

Your email address will not be published. Required fields are marked *