Menu Close

Question-159233




Question Number 159233 by mnjuly1970 last updated on 14/Nov/21
Answered by mindispower last updated on 16/Nov/21
A_(2n) =Σ_(k≥1) (1/((2k)^(2n) ))=(1/2^(2n) ).ζ(2n)  (((ζ(2n))/2^(2n) )/(2n(2n+1)))=−((ζ(2n))/(2^(2n) (2n+1)))+((ζ(2n))/(2^(2n) .(2n)))  Σ_(k≥1) ζ(2k)x^(2k) =−((πx)/2)cot(πx)+(1/2)  Σ_(k≥1) ((ζ(2k)x^(2k) )/(2k))=∫_0 ^x (−(π/2)cot(πx)+(1/(2x)))dx  =lim_(t→0) ∫_t ^x (−(π/2)cot(πx)+(1/(2x)))dx=  =lim_(t→0) ∫_t ^x (−(1/2)ln(sin(πx))+(1/2)ln(x))  (1/2)(ln((x/(sinπx)))−lim_(t→0) ln((t/(sin(πt))))  =ln((√(x/(sin(πx)))))+ln((√π))  Σ_(k≥1) ((ζ(2n))/(2^(2n) (2n)))=ln((√(1/2)))+ln((√π))  Σ_(n≥1) ((ζ(2n))/(2^(2n) (2n+1)))=2∫_0 ^(1/2) Σ_(n≥1) ζ(2n)x^(2n) dx  =2∫_0 ^(1/2) ((1/2)−(π/2)xcot(πx))dx=(1/2)−(1/π)∫_0 ^(π/2) ucot(u)du  =((1/2)+(1/π)∫_0 ^(π/2) ln(sin(u))du)=(1/2)+(1/π).−(π/2)ln(2)=(1/2)(1−ln(2))  S=(1/2)(ln(π)−ln(2))−(1/2)(1−ln(2))  =(1/2)(ln(π)−1)
A2n=k11(2k)2n=122n.ζ(2n)ζ(2n)22n2n(2n+1)=ζ(2n)22n(2n+1)+ζ(2n)22n.(2n)k1ζ(2k)x2k=πx2cot(πx)+12k1ζ(2k)x2k2k=0x(π2cot(πx)+12x)dx=limt0tx(π2cot(πx)+12x)dx==limt0tx(12ln(sin(πx))+12ln(x))12(ln(xsinπx)limt0ln(tsin(πt))=ln(xsin(πx))+ln(π)k1ζ(2n)22n(2n)=ln(12)+ln(π)n1ζ(2n)22n(2n+1)=2012n1ζ(2n)x2ndx=2012(12π2xcot(πx))dx=121π0π2ucot(u)du=(12+1π0π2ln(sin(u))du)=12+1π.π2ln(2)=12(1ln(2))S=12(ln(π)ln(2))12(1ln(2))=12(ln(π)1)
Commented by mnjuly1970 last updated on 15/Nov/21
very nice sir power...thx alot
verynicesirpowerthxalot
Commented by mindispower last updated on 15/Nov/21
withe pleasur sir
withepleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *