Menu Close

Question-15927




Question Number 15927 by ajfour last updated on 15/Jun/17
Commented by ajfour last updated on 15/Jun/17
Q.15917 (sorry it got uploaded  as new question)  mid points of the sides of   quadrilateral ABCD are   E, F, G, and H. Midpoints of  its digonals L and K.    To prove : intersection point J  of EG and HF   lies on LK and  is their (EG, HF, LK) midpoint.
Q.15917(sorryitgotuploadedasnewquestion)midpointsofthesidesofquadrilateralABCDareE,F,G,andH.MidpointsofitsdigonalsLandK.Toprove:intersectionpointJofEGandHFliesonLKandistheir(EG,HF,LK)midpoint.
Commented by ajfour last updated on 15/Jun/17
 z_1 +z_2 =z_3 +z_4    .....(i)  let B is the origin    z_L =((z_1 +z_2 )/2)  ,   z_K =z_1 +((z_3 −z_1 )/2) =((z_1 +z_3 )/2)   z_H =(z_1 /2)  ,  z_F =z_3 +(z_4 /2)    A point of HF :    z_(HF)  = z_H +μ(z_F −z_H )          = (z_1 /2)+μ(z_3 +((z_4 −z_1 )/2))          = (z_1 /2)+μ(z_3 +((z_2 −z_3 )/2))    [see (i)]       z_(HF)  = (z_1 /2)+μ(((z_2 +z_3 )/2))    ...(ii)    z_E = (z_3 /2)  ,  z_G  = z_1 +(z_2 /2)   A point on EG obeys :   z_(EG) = z_E +ε(z_G −z_E )          = (z_3 /2)+ε(z_1 +((z_2 −z_3 )/2))    ...(iii)  point of intersection J of HF and  EG shall obey both their eqns.    (ii) and (iii)  z_J =(z_1 /2)+μ(((z_2 +z_3 )/2))=(z_3 /2)+ε(z_1 +((z_2 −z_3 )/2))  ⇒  z_1 ((1/2)−ε)+z_2 ((μ/2)−(ε/2))+                                z_3 ((μ/2)−(1/2)+(ε/2)) =0    as z_1 , z_2 , z_3  can be independently   chosen to form a quadrilateral   but above eqn. is always true, so  for point J,     ε=(1/2) , μ=ε=(1/2)  this implies J is the midpoint  of HF and EG , and that   z_J =(z_1 /2)+((z_2 +z_3 )/4)       (by substituting μ=(1/2) in (ii))  It now remains to prove that  J is also the midpoint of LK.   midpoint of LK is       z=((z_L +z_K )/2)      z= (1/2)(((z_1 +z_2 )/2)+((z_1 +z_3 )/2))        = (z_1 /2)+((z_2 +z_3 )/4)   = z_(J )   so midpoints of EG, HF, and   LK coincide in J .
z1+z2=z3+z4..(i)letBistheoriginzL=z1+z22,zK=z1+z3z12=z1+z32zH=z12,zF=z3+z42ApointofHF:zHF=zH+μ(zFzH)=z12+μ(z3+z4z12)=z12+μ(z3+z2z32)[see(i)]zHF=z12+μ(z2+z32)(ii)zE=z32,zG=z1+z22ApointonEGobeys:zEG=zE+ϵ(zGzE)=z32+ϵ(z1+z2z32)(iii)pointofintersectionJofHFandEGshallobeyboththeireqns.(ii)and(iii)zJ=z12+μ(z2+z32)=z32+ϵ(z1+z2z32)z1(12ϵ)+z2(μ2ϵ2)+z3(μ212+ϵ2)=0asz1,z2,z3canbeindependentlychosentoformaquadrilateralbutaboveeqn.isalwaystrue,soforpointJ,ϵ=12,μ=ϵ=12thisimpliesJisthemidpointofHFandEG,andthatzJ=z12+z2+z34(bysubstitutingμ=12in(ii))ItnowremainstoprovethatJisalsothemidpointofLK.midpointofLKisz=zL+zK2z=12(z1+z22+z1+z32)=z12+z2+z34=zJsomidpointsofEG,HF,andLKcoincideinJ.
Commented by mrW1 last updated on 15/Jun/17
excellent sir! you master the vector  technique outstandingly.
excellentsir!youmasterthevectortechniqueoutstandingly.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/Jun/17
let:A(a),B(b),C(c),D(d),L(l),K(k)  H(h)=((b+c)/2),F(f)=((a+d)/2),E(e)=((a+b)/2),  G(g)=((d+c)/2)  ⇒L(l)=((b+d)/2),K(k)=((a+c)/2)  J=((((b+d)/2)+((a+c)/2))/2)=((a+b+c+d)/4)  (i)  midpoint of FH=((((a+d)/2)+((b+c)/2))/2)=((a+d+b+c)/4) (ii)    midpoint of EG=((((a+b)/2)+((d+c)/2))/2)=((a+b+d+c)/4) (iii)  a,b,c,d,e,f,g,,k,l,are complex numbers.  from equations i,ii,iii,we see that:  midpoint of:EG,FH,LK,have the same  cordinates.so they should be the same  point. ■
let:A(a),B(b),C(c),D(d),L(l),K(k)H(h)=b+c2,F(f)=a+d2,E(e)=a+b2,G(g)=d+c2L(l)=b+d2,K(k)=a+c2J=b+d2+a+c22=a+b+c+d4(i)midpointofFH=a+d2+b+c22=a+d+b+c4(ii)midpointofEG=a+b2+d+c22=a+b+d+c4(iii)a,b,c,d,e,f,g,,k,l,arecomplexnumbers.fromequationsi,ii,iii,weseethat:midpointof:EG,FH,LK,havethesamecordinates.sotheyshouldbethesamepoint.◼
Commented by ajfour last updated on 19/Jun/17
thank you, sir. you cut my long  story short.
thankyou,sir.youcutmylongstoryshort.

Leave a Reply

Your email address will not be published. Required fields are marked *