Menu Close

Question-159392




Question Number 159392 by ajfour last updated on 16/Nov/21
Commented by ajfour last updated on 16/Nov/21
  Find radius of the circles(equal).
$$\:\:{Find}\:{radius}\:{of}\:{the}\:{circles}\left({equal}\right). \\ $$
Answered by mr W last updated on 17/Nov/21
Commented by mr W last updated on 18/Nov/21
eqn. of OC:  say y=mx ⇒mx−y=0  eqn. of AD:  sau y=−k(x−1) ⇒kx+y−k=0  P(r,1−r)  Q(q,r)    r=−((mr−1+r)/( (√(1+m^2 ))))   ...(i)  r=((mq−r)/( (√(1+m^2 ))))   ...(ii)  r=−((kr+1−r−k)/( (√(1+k^2 ))))   ...(iii)  r=−((kq+r−k)/( (√(1+k^2 ))))   ...(iv)  4 unknowns: r, m, k, q    mq−r+mr−1+r=0  ⇒q=(1/m)−r  kq+r−k=kr+1−r−k  ⇒k=((1−2r)/(q−r))  k=((1−2r)/((1/m)−2r))   ... (I)    from (ii):  r=((1−(m+1)r)/( (√(1+m^2 ))))  r=(1/(1+m+(√(1+m^2 ))))   ...(II)  from (iv):  1−k+(√(1+k^2 ))=(1−(1/m))(k/r)   ...(III)  putting I, II into III we get an. eqn.  for m.  ⇒m≈1.243756  ⇒r≈0.2694
$${eqn}.\:{of}\:{OC}: \\ $$$${say}\:{y}={mx}\:\Rightarrow{mx}−{y}=\mathrm{0} \\ $$$${eqn}.\:{of}\:{AD}: \\ $$$${sau}\:{y}=−{k}\left({x}−\mathrm{1}\right)\:\Rightarrow{kx}+{y}−{k}=\mathrm{0} \\ $$$${P}\left({r},\mathrm{1}−{r}\right) \\ $$$${Q}\left({q},{r}\right) \\ $$$$ \\ $$$${r}=−\frac{{mr}−\mathrm{1}+{r}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}\:\:\:…\left({i}\right) \\ $$$${r}=\frac{{mq}−{r}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}\:\:\:…\left({ii}\right) \\ $$$${r}=−\frac{{kr}+\mathrm{1}−{r}−{k}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\:\:\:…\left({iii}\right) \\ $$$${r}=−\frac{{kq}+{r}−{k}}{\:\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }}\:\:\:…\left({iv}\right) \\ $$$$\mathrm{4}\:{unknowns}:\:{r},\:{m},\:{k},\:{q} \\ $$$$ \\ $$$${mq}−{r}+{mr}−\mathrm{1}+{r}=\mathrm{0} \\ $$$$\Rightarrow{q}=\frac{\mathrm{1}}{{m}}−{r} \\ $$$${kq}+{r}−{k}={kr}+\mathrm{1}−{r}−{k} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}−\mathrm{2}{r}}{{q}−{r}} \\ $$$${k}=\frac{\mathrm{1}−\mathrm{2}{r}}{\frac{\mathrm{1}}{{m}}−\mathrm{2}{r}}\:\:\:…\:\left({I}\right) \\ $$$$ \\ $$$${from}\:\left({ii}\right): \\ $$$${r}=\frac{\mathrm{1}−\left({m}+\mathrm{1}\right){r}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{1}+{m}+\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}\:\:\:…\left({II}\right) \\ $$$${from}\:\left({iv}\right): \\ $$$$\mathrm{1}−{k}+\sqrt{\mathrm{1}+{k}^{\mathrm{2}} }=\left(\mathrm{1}−\frac{\mathrm{1}}{{m}}\right)\frac{{k}}{{r}}\:\:\:…\left({III}\right) \\ $$$${putting}\:{I},\:{II}\:{into}\:{III}\:{we}\:{get}\:{an}.\:{eqn}. \\ $$$${for}\:{m}. \\ $$$$\Rightarrow{m}\approx\mathrm{1}.\mathrm{243756} \\ $$$$\Rightarrow{r}\approx\mathrm{0}.\mathrm{2694} \\ $$
Commented by mr W last updated on 18/Nov/21
Commented by ajfour last updated on 18/Nov/21
Excellent sir, thanks!  i m out of m town to take up a job,  hence my inconsistency..
$${Excellent}\:{sir},\:{thanks}! \\ $$$${i}\:{m}\:{out}\:{of}\:{m}\:{town}\:{to}\:{take}\:{up}\:{a}\:{job}, \\ $$$${hence}\:{my}\:{inconsistency}.. \\ $$
Commented by mr W last updated on 18/Nov/21
good luck with the new job sir!
$${good}\:{luck}\:{with}\:{the}\:{new}\:{job}\:{sir}! \\ $$
Commented by Tawa11 last updated on 28/Nov/21
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *