Menu Close

Question-159507




Question Number 159507 by cortano last updated on 18/Nov/21
Commented by tounghoungko last updated on 18/Nov/21
 ((5.5^(−2x) +5^3 .5^(−2x) )/((5/8).2^(2x) )) = 4  ⇔ 5^(−2x) +5^2 .5^(−2x)  = (1/2).2^(2x)   ⇔26.5^(−2x)  = (1/2).2^(2x)   ⇔ 52 = 10^(2x)  ⇒x=(1/2)log _(10) (52)
5.52x+53.52x58.22x=452x+52.52x=12.22x26.52x=12.22x52=102xx=12log10(52)
Answered by Tokugami last updated on 18/Nov/21
((5^(1−2x) +(√(25^(3−2x) )))/(2^(2x−1) +2^(2x−3) ))=4  ((5^(1−2x) +(√(25^(3−2x) )))/(2^(2x−1) +2^(2x−3) ))=2^2   5^(1−2x) +(√(25^(3−2x) ))=2^(2x−1+2) +2^(2x−3+2)   5^(1−2x) +5^(3−2x) =2^(2x+1) +2^(2x−1)   5^(−2x) (5^1 +5^3 )=2^(2x) (2^1 +2^(−1) )  ((130)/5^(2x) )=2^(2x) ((5/2))  ((260)/5)=10^(2x)   52=10^(2x)   ln(52)=2xln(10)  2x=((ln 52)/(ln 10))=log_(10) (52)  x=(1/2)log_(10) (52)  x≈0.858
512x+2532x22x1+22x3=4512x+2532x22x1+22x3=22512x+2532x=22x1+2+22x3+2512x+532x=22x+1+22x152x(51+53)=22x(21+21)13052x=22x(52)2605=102x52=102xln(52)=2xln(10)2x=ln52ln10=log10(52)x=12log10(52)x0.858
Answered by qaz last updated on 18/Nov/21
((5^(1−2x) (√(25^(3−2x) )))/(2^(2x−1) +2^(2x−3) ))=((5^(1−2x) +5^(3−2x) )/(2^(2x−1) +2^(2x−3) ))=(((5+5^3 )5^(−2x) )/((2^(−1) +2^(−3) )2^(2x) ))=208∙10^(−2x) =4  ⇒x=(1/2)lg52
512x2532x22x1+22x3=512x+532x22x1+22x3=(5+53)52x(21+23)22x=208102x=4x=12lg52

Leave a Reply

Your email address will not be published. Required fields are marked *