Menu Close

Question-159744




Question Number 159744 by 0731619 last updated on 20/Nov/21
Answered by gsk2684 last updated on 20/Nov/21
(0/0) form, apply L′hospital rule  lim_(x→2) ((−(cos (π/x))(−(π/x^2 )))/((sin πx)π))=(1/4)lim(((cos (π/x)))/((sin πx))) _(x→2)   again apply the same rule  (1/4)lim_(x→2) (((−sin  (π/x))(−(π/x^2 )))/((cos  πx)π)) =(1/4)(((−sin  (π/2))(−(π/2^2 )))/((cos  2π)π))   =(1/4)(((−1)(−(π/4)))/((1)π)) =(1/(16))
$$\frac{\mathrm{0}}{\mathrm{0}}\:{form},\:{apply}\:{L}'{hospital}\:{rule} \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{−\left(\mathrm{cos}\:\frac{\pi}{{x}}\right)\left(−\frac{\pi}{{x}^{\mathrm{2}} }\right)}{\left(\mathrm{sin}\:\pi{x}\right)\pi}=\underset{{x}\rightarrow\mathrm{2}} {\frac{\mathrm{1}}{\mathrm{4}}\mathrm{lim}\frac{\left(\mathrm{cos}\:\frac{\pi}{{x}}\right)}{\left(\mathrm{sin}\:\pi{x}\right)}\:} \\ $$$${again}\:{apply}\:{the}\:{same}\:{rule} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\left(−\mathrm{sin}\:\:\frac{\pi}{{x}}\right)\left(−\frac{\pi}{{x}^{\mathrm{2}} }\right)}{\left(\mathrm{cos}\:\:\pi{x}\right)\pi}\:=\frac{\mathrm{1}}{\mathrm{4}}\frac{\left(−\mathrm{sin}\:\:\frac{\pi}{\mathrm{2}}\right)\left(−\frac{\pi}{\mathrm{2}^{\mathrm{2}} }\right)}{\left(\mathrm{cos}\:\:\mathrm{2}\pi\right)\pi}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\frac{\left(−\mathrm{1}\right)\left(−\frac{\pi}{\mathrm{4}}\right)}{\left(\mathrm{1}\right)\pi}\:=\frac{\mathrm{1}}{\mathrm{16}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *