Menu Close

Question-159828




Question Number 159828 by amin96 last updated on 21/Nov/21
Commented by Rasheed.Sindhi last updated on 21/Nov/21
Commented by Rasheed.Sindhi last updated on 21/Nov/21
The both angles labled by ′x′ are  congruent because they′re corresponding  angles.But their value is not fixed  (as sir mr W has said about your  previous version of the question.)
$$\mathcal{T}{he}\:{both}\:{angles}\:{labled}\:{by}\:'{x}'\:{are} \\ $$$${congruent}\:{because}\:{they}'{re}\:{corresponding} \\ $$$${angles}.{But}\:{their}\:{value}\:{is}\:{not}\:{fixed} \\ $$$$\left({as}\:{sir}\:{mr}\:{W}\:{has}\:{said}\:{about}\:{your}\right. \\ $$$$\left.{previous}\:{version}\:{of}\:{the}\:{question}.\right) \\ $$
Commented by amin96 last updated on 21/Nov/21
  no solution?
$$ \\ $$no solution?
Commented by amin96 last updated on 21/Nov/21
yes i know
$${yes}\:{i}\:{know} \\ $$
Commented by mr W last updated on 21/Nov/21
if you don′t understand the answer  of somebody, please tell where your  problem is, instead of posting the   same question again and again.  here is my explanation why the   question is wrong or why it has no   solution:  see following diagram.  with given conditions only the red  part is defined. you can draw infinite  many parallel lines, such as the black  ones, the blue ones or the green ones.  that means there is no unique  solution for the angle between the  parallel lines and the red base line.
$${if}\:{you}\:{don}'{t}\:{understand}\:{the}\:{answer} \\ $$$${of}\:{somebody},\:{please}\:{tell}\:{where}\:{your} \\ $$$${problem}\:{is},\:{instead}\:{of}\:{posting}\:{the}\: \\ $$$${same}\:{question}\:{again}\:{and}\:{again}. \\ $$$${here}\:{is}\:{my}\:{explanation}\:{why}\:{the}\: \\ $$$${question}\:{is}\:{wrong}\:{or}\:{why}\:{it}\:{has}\:{no}\: \\ $$$${solution}: \\ $$$${see}\:{following}\:{diagram}. \\ $$$${with}\:{given}\:{conditions}\:{only}\:{the}\:{red} \\ $$$${part}\:{is}\:{defined}.\:{you}\:{can}\:{draw}\:{infinite} \\ $$$${many}\:{parallel}\:{lines},\:{such}\:{as}\:{the}\:{black} \\ $$$${ones},\:{the}\:{blue}\:{ones}\:{or}\:{the}\:{green}\:{ones}. \\ $$$${that}\:{means}\:{there}\:{is}\:{no}\:{unique} \\ $$$${solution}\:{for}\:{the}\:{angle}\:{between}\:{the} \\ $$$${parallel}\:{lines}\:{and}\:{the}\:{red}\:{base}\:{line}. \\ $$
Commented by mr W last updated on 21/Nov/21

Leave a Reply

Your email address will not be published. Required fields are marked *