Question Number 159864 by cherokeesay last updated on 21/Nov/21
Answered by som(math1967) last updated on 22/Nov/21
$$\frac{{MP}}{{AM}}={sin}\mathrm{30}\Rightarrow{AM}=\mathrm{2}{R} \\ $$$${BL}={KN}=\sqrt{{MN}^{\mathrm{2}} −{MK}^{\mathrm{2}} } \\ $$$$=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} }=\sqrt{\mathrm{4}{rR}}=\mathrm{2}\sqrt{{R}} \\ $$$$\frac{{LC}}{{LN}}={cot}\mathrm{30}\Rightarrow{LC}=\sqrt{\mathrm{3}}{LN}=\sqrt{\mathrm{3}}{r}=\sqrt{\mathrm{3}} \\ $$$$\frac{{AB}}{{BC}}={tan}\mathrm{60} \\ $$$$\frac{\mathrm{2}{R}+{R}}{\mathrm{2}\sqrt{{R}}+\sqrt{\mathrm{3}}}={tan}\mathrm{60} \\ $$$$\mathrm{3}{R}=\mathrm{2}\sqrt{\mathrm{3}{R}}+\mathrm{3} \\ $$$$\mathrm{3}\left({R}−\mathrm{1}\right)=\mathrm{2}\sqrt{\mathrm{3}{R}} \\ $$$$\mathrm{9}\left({R}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{12}{R} \\ $$$$\mathrm{3}{R}^{\mathrm{2}} +\mathrm{3}−\mathrm{6}{R}=\mathrm{4}{R} \\ $$$$\mathrm{3}{R}^{\mathrm{2}} −\mathrm{10}{R}+\mathrm{3}=\mathrm{0} \\ $$$${R}=\mathrm{3} \\ $$$$\therefore{AB}=\mathrm{3}×\mathrm{3}=\mathrm{9} \\ $$$${BC}={ABtan}\mathrm{30}=\mathrm{3}\sqrt{\mathrm{3}} \\ $$$${AC}=\sqrt{\mathrm{27}+\mathrm{81}}=\mathrm{6}\sqrt{\mathrm{3}} \\ $$$${perimeter}=\left(\mathrm{6}\sqrt{\mathrm{3}}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{9}\right){unit} \\ $$
Commented by som(math1967) last updated on 22/Nov/21
Commented by cherokeesay last updated on 22/Nov/21
$${thank}\:{you}\:{sir}\:! \\ $$
Answered by mr W last updated on 22/Nov/21
Commented by mr W last updated on 22/Nov/21
$$\frac{{EF}}{{EG}}=\mathrm{sin}\:\mathrm{30}° \\ $$$$\frac{{R}−{r}}{{R}+{r}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{R}=\mathrm{3}{r}=\mathrm{3} \\ $$$${AD}={DC}={BC}=\frac{{R}}{\mathrm{tan}\:\mathrm{30}°}=\sqrt{\mathrm{3}}{R}=\mathrm{3}\sqrt{\mathrm{3}} \\ $$$${AE}={EC}=\frac{{R}}{\mathrm{sin}\:\mathrm{30}°}=\mathrm{2}{R}=\mathrm{6} \\ $$$${perimeter}\:{P}=\mathrm{3}+\mathrm{3}×\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{6}=\mathrm{9}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right) \\ $$
Commented by som(math1967) last updated on 22/Nov/21
$${Good}\:{way}\:{sir} \\ $$
Commented by cherokeesay last updated on 22/Nov/21
$${very}\:{nice}\:! \\ $$$${thank}\:{you}\:! \\ $$
Commented by Tawa11 last updated on 22/Nov/21
$$\mathrm{Great} \\ $$