Menu Close

Question-160142




Question Number 160142 by cortano last updated on 25/Nov/21
Answered by puissant last updated on 25/Nov/21
lim_(x→1) ((x^(1111) +2x^(2222) −3x^(3333) )/(x^(4444) −1))   = lim_(x→1) (((d/dx){x^(1111) +2x^(2222) −3x^(3333) })/((d/dx){x^(4444) −1}))  = lim_(x→1) ((1111x^(1110) +4444x^(2221) −9999x^(3332) )/(4444x^(4443) ))  = ((1111+4444−9999)/(4444)) = −((4444)/(4444)) = −1..                ............Le puissant............
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}}\: \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\frac{{d}}{{dx}}\left\{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} \right\}}{\frac{{d}}{{dx}}\left\{{x}^{\mathrm{4444}} −\mathrm{1}\right\}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1111}{x}^{\mathrm{1110}} +\mathrm{4444}{x}^{\mathrm{2221}} −\mathrm{9999}{x}^{\mathrm{3332}} }{\mathrm{4444}{x}^{\mathrm{4443}} } \\ $$$$=\:\frac{\mathrm{1111}+\mathrm{4444}−\mathrm{9999}}{\mathrm{4444}}\:=\:−\frac{\mathrm{4444}}{\mathrm{4444}}\:=\:−\mathrm{1}.. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:…………\mathscr{L}{e}\:{puissant}………… \\ $$
Commented by cortano last updated on 25/Nov/21
yes
$${yes} \\ $$
Answered by Rasheed.Sindhi last updated on 25/Nov/21
≻_( ⋏) ^( ⋎) Without Using Calculus_⋏ ^⋎ ≺  lim((x^(1111) +2x^(2222) −3x^(3333) )/(x^(4444) −1))  lim_(x→1) ((x^(1111) −x^(2222) +3x^(2222) −3x^(3333) )/(x^(4444) −1))  lim_(x→1) ((x^(1111) (1−x^(1111) )+3x^(2222) (1−x^(1111) ))/((x^(2222) −1)(x^(2222) +1)))  lim_(x→1) ((−(x^(1111) −1)(x^(1111) +3x^(2222) ))/((x^(1111) −1)(x^(1111) +1)(x^(2222) +1)))  lim_(x→1) ((−(x^(1111) +3x^(2222) ))/((x^(1111) +1)(x^(2222) +1)))=((−(1+3))/((1+1)(1+1)))  =((−4)/4)=−1
$$\succ_{\:\curlywedge} ^{\:\curlyvee} \mathrm{Without}\:\mathrm{Using}\:\mathrm{Calculus}_{\curlywedge} ^{\curlyvee} \prec \\ $$$$\mathrm{lim}\frac{{x}^{\mathrm{1111}} +\mathrm{2}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} −{x}^{\mathrm{2222}} +\mathrm{3}{x}^{\mathrm{2222}} −\mathrm{3}{x}^{\mathrm{3333}} }{{x}^{\mathrm{4444}} −\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}^{\mathrm{1111}} \left(\mathrm{1}−{x}^{\mathrm{1111}} \right)+\mathrm{3}{x}^{\mathrm{2222}} \left(\mathrm{1}−{x}^{\mathrm{1111}} \right)}{\left({x}^{\mathrm{2222}} −\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{−\cancel{\left({x}^{\mathrm{1111}} −\mathrm{1}\right)}\left({x}^{\mathrm{1111}} +\mathrm{3}{x}^{\mathrm{2222}} \right)}{\cancel{\left({x}^{\mathrm{1111}} −\mathrm{1}\right)}\left({x}^{\mathrm{1111}} +\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{−\left({x}^{\mathrm{1111}} +\mathrm{3}{x}^{\mathrm{2222}} \right)}{\left({x}^{\mathrm{1111}} +\mathrm{1}\right)\left({x}^{\mathrm{2222}} +\mathrm{1}\right)}=\frac{−\left(\mathrm{1}+\mathrm{3}\right)}{\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)} \\ $$$$=\frac{−\mathrm{4}}{\mathrm{4}}=−\mathrm{1} \\ $$
Commented by puissant last updated on 25/Nov/21
Sir Rasheed.Sindhi (1−x^(1111) )=−(x^(1111) −1)
$${Sir}\:{Rasheed}.{Sindhi}\:\left(\mathrm{1}−{x}^{\mathrm{1111}} \right)=−\left({x}^{\mathrm{1111}} −\mathrm{1}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 25/Nov/21
Th∀nks to correct me sir! I′m going  to edit my answer.
$$\mathbb{T}\mathrm{h}\forall\mathrm{n}\Bbbk\mathrm{s}\:\mathrm{to}\:\mathrm{correct}\:\mathrm{me}\:\mathrm{sir}!\:\mathrm{I}'\mathrm{m}\:\mathrm{going} \\ $$$$\mathrm{to}\:\mathrm{edit}\:\mathrm{my}\:\mathrm{answer}. \\ $$
Commented by cortano last updated on 25/Nov/21
okay
$${okay} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *