Question Number 160221 by HongKing last updated on 26/Nov/21
Commented by mr W last updated on 26/Nov/21
$${if}\:{question}\:{is}\:{right},\:{then}\:{answer}\:{is} \\ $$$${wrong}.\:{if}\:{answer}\:{is}\:{right},\:{then}\: \\ $$$${question}\:{is}\:{wrong}. \\ $$$$\Rightarrow{typo}! \\ $$
Commented by quvonnn last updated on 26/Nov/21
$$ \\ $$
Commented by Rasheed.Sindhi last updated on 26/Nov/21
$$\mathrm{I}\:\mathrm{think}\:\mathrm{sir},\:\mathrm{tg}\left(\mathrm{87}°\right)\:\mathrm{instead}\:\mathrm{of}\:\mathrm{tg}\left(\mathrm{78}°\right) \\ $$
Commented by quvonnn last updated on 26/Nov/21
Answered by Rasheed.Sindhi last updated on 26/Nov/21
$$\mathrm{tg}\left(\mathrm{1}\right).\mathrm{tg}\left(\mathrm{2}\right).\mathrm{tg}\left(\mathrm{3}\right)…..\mathrm{tg}\left(\mathrm{87}\right).\mathrm{tg}\left(\mathrm{88}\right).\mathrm{tg}\left(\mathrm{89}\right)=\mathrm{1} \\ $$$$\mathrm{tan}\theta\mathrm{tan}\left(\mathrm{90}−\theta\right)=\mathrm{1} \\ $$$$\:\mathrm{tan}\left(\mathrm{90}−\theta\right)=\mathrm{tan}\left(\mathrm{45}+\left(\mathrm{45}−\theta\right)\right) \\ $$$$=\frac{\mathrm{tan45}+\mathrm{tan}\left(\mathrm{45}−\theta\right)\:\:}{\mathrm{1}−\mathrm{tan45tan}\left(\mathrm{45}−\theta\right)\:\:}\: \\ $$$$\mathrm{tan}\left(\mathrm{45}−\theta\right)=\frac{\mathrm{tan45}−\mathrm{tan}\theta\:\:}{\mathrm{1}+\mathrm{tan45tan}\theta\:\:}=\frac{\mathrm{1}−\mathrm{tan}\theta\:}{\mathrm{1}+\mathrm{tan}\theta\:} \\ $$$$=\frac{\mathrm{1}+\frac{\mathrm{1}−\mathrm{tan}\theta\:}{\mathrm{1}+\mathrm{tan}\theta\:}\:\:}{\mathrm{1}−\left(\mathrm{1}\right)\left(\frac{\mathrm{1}−\mathrm{tan}\theta\:}{\mathrm{1}+\mathrm{tan}\theta\:}\right)\:\:}=\frac{\mathrm{1}+\mathrm{tan}\theta+\mathrm{1}−\mathrm{tan}\theta\:\:}{\mathrm{1}+\mathrm{tan}\theta−\mathrm{1}+\mathrm{tan}\theta\:} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2tan}\theta\:}=\frac{\mathrm{1}}{\mathrm{tan}\theta\:} \\ $$$$\therefore\:\:\:\:\mathrm{tan}\theta\mathrm{tan}\left(\mathrm{90}−\theta\right)=\mathrm{1} \\ $$$$ \\ $$$$\mathrm{LHS}: \\ $$$$\left(\mathrm{tan1tan89}\right)\left(\mathrm{tan2tan88}\right)…\left(\mathrm{tan45tan45}\right) \\ $$$$=\underset{\mathrm{45}\:\mathrm{times}} {\mathrm{1}.\mathrm{1}.\mathrm{1}….\mathrm{1}}=\mathrm{1}^{\mathrm{45}} =\mathrm{1}=\mathrm{RHS}\:\:\:\:\:\:\:\: \\ $$