Menu Close

Question-160302




Question Number 160302 by cortano last updated on 27/Nov/21
Answered by Rasheed.Sindhi last updated on 27/Nov/21
 { ((8x^2 −8y^2 =24)),((3x^2 +3xy+6y^2 =24)) :}⇒5x^2 −3xy−14y^2 =0  ⇒5x^2 −10xy+7xy−14y^2 =0       5x(x−2y)+7y(x−2y)=0       (x−2y)(5x+7y)=0  x=2y ∣ x=−((7y)/5)  x=2y  x^2 −y^2 =3⇒4y^2 −y^2 =3⇒y=±1  ⇒x=2(±1)=±2  (x,y)=(1,2),(−1,−2)  x=−((7y)/5)  (−((7y)/5))^2 −y^2 =3⇒49y^2 −25y^2 =75  ⇒24y^2 =75⇒y^2 =((25)/8)⇒y=±(5/(2(√2)))  ⇒x=−(7/5)(±(5/(2(√2))))=∓(7/( 2(√2)))  (x,y)=((7/( 2(√2))),−(5/(2(√2)))),(−(7/( 2(√2))),(5/(2(√2))))    (x,y)=(1,2),(−1,−2),((7/( 2(√2))),−(5/(2(√2)))),(−(7/( 2(√2))),(5/(2(√2))))
$$\begin{cases}{\mathrm{8}{x}^{\mathrm{2}} −\mathrm{8}{y}^{\mathrm{2}} =\mathrm{24}}\\{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{xy}+\mathrm{6}{y}^{\mathrm{2}} =\mathrm{24}}\end{cases}\Rightarrow\mathrm{5}{x}^{\mathrm{2}} −\mathrm{3}{xy}−\mathrm{14}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{x}^{\mathrm{2}} −\mathrm{10}{xy}+\mathrm{7}{xy}−\mathrm{14}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{5}{x}\left({x}−\mathrm{2}{y}\right)+\mathrm{7}{y}\left({x}−\mathrm{2}{y}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\left({x}−\mathrm{2}{y}\right)\left(\mathrm{5}{x}+\mathrm{7}{y}\right)=\mathrm{0} \\ $$$${x}=\mathrm{2}{y}\:\mid\:{x}=−\frac{\mathrm{7}{y}}{\mathrm{5}} \\ $$$$\underline{{x}=\mathrm{2}{y}} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{3}\Rightarrow\mathrm{4}{y}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{3}\Rightarrow{y}=\pm\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{2}\left(\pm\mathrm{1}\right)=\pm\mathrm{2} \\ $$$$\left({x},{y}\right)=\left(\mathrm{1},\mathrm{2}\right),\left(−\mathrm{1},−\mathrm{2}\right) \\ $$$${x}=−\frac{\mathrm{7}{y}}{\mathrm{5}} \\ $$$$\left(−\frac{\mathrm{7}{y}}{\mathrm{5}}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{3}\Rightarrow\mathrm{49}{y}^{\mathrm{2}} −\mathrm{25}{y}^{\mathrm{2}} =\mathrm{75} \\ $$$$\Rightarrow\mathrm{24}{y}^{\mathrm{2}} =\mathrm{75}\Rightarrow{y}^{\mathrm{2}} =\frac{\mathrm{25}}{\mathrm{8}}\Rightarrow{y}=\pm\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{7}}{\mathrm{5}}\left(\pm\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)=\mp\frac{\mathrm{7}}{\:\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\left({x},{y}\right)=\left(\frac{\mathrm{7}}{\:\mathrm{2}\sqrt{\mathrm{2}}},−\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}}\right),\left(−\frac{\mathrm{7}}{\:\mathrm{2}\sqrt{\mathrm{2}}},\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$$ \\ $$$$\left({x},{y}\right)=\left(\mathrm{1},\mathrm{2}\right),\left(−\mathrm{1},−\mathrm{2}\right),\left(\frac{\mathrm{7}}{\:\mathrm{2}\sqrt{\mathrm{2}}},−\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}}\right),\left(−\frac{\mathrm{7}}{\:\mathrm{2}\sqrt{\mathrm{2}}},\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$$ \\ $$
Commented by cortano last updated on 27/Nov/21
yes  nice
$$\mathrm{yes}\:\:\mathrm{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *