Menu Close

Question-160325




Question Number 160325 by NUR23 last updated on 27/Nov/21
Commented by NUR23 last updated on 27/Nov/21
By the name of odin plz help me
$${By}\:{the}\:{name}\:{of}\:{odin}\:{plz}\:{help}\:{me} \\ $$$$ \\ $$
Commented by mr W last updated on 29/Nov/21
yesterday i saw a man crying loudly  for help on the street. then people  came and helped ihm. what did the  man? nothing! he spoke no word as  if he were dump. he neither thanked  the people who helped him nor told if  the problem he had was gone. i guess  next time when he cries for help  again, not so many people will come  to help him.
$${yesterday}\:{i}\:{saw}\:{a}\:{man}\:{crying}\:{loudly} \\ $$$${for}\:{help}\:{on}\:{the}\:{street}.\:{then}\:{people} \\ $$$${came}\:{and}\:{helped}\:{ihm}.\:{what}\:{did}\:{the} \\ $$$${man}?\:{nothing}!\:{he}\:{spoke}\:{no}\:{word}\:{as} \\ $$$${if}\:{he}\:{were}\:{dump}.\:{he}\:{neither}\:{thanked} \\ $$$${the}\:{people}\:{who}\:{helped}\:{him}\:{nor}\:{told}\:{if} \\ $$$${the}\:{problem}\:{he}\:{had}\:{was}\:{gone}.\:{i}\:{guess} \\ $$$${next}\:{time}\:{when}\:{he}\:{cries}\:{for}\:{help} \\ $$$${again},\:{not}\:{so}\:{many}\:{people}\:{will}\:{come} \\ $$$${to}\:{help}\:{him}. \\ $$
Commented by Tawa11 last updated on 03/Dec/21
That is human being sir.  I personally love your geometry solutions sir.  That is why I follow your solutions everytime.   God bless you sir.
$$\mathrm{That}\:\mathrm{is}\:\mathrm{human}\:\mathrm{being}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{personally}\:\mathrm{love}\:\mathrm{your}\:\mathrm{geometry}\:\mathrm{solutions}\:\mathrm{sir}. \\ $$$$\mathrm{That}\:\mathrm{is}\:\mathrm{why}\:\mathrm{I}\:\mathrm{follow}\:\mathrm{your}\:\mathrm{solutions}\:\mathrm{everytime}.\: \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mr W last updated on 27/Nov/21
say OE=1  ((OF)/(sin 40))=((EF)/(sin 60))=((OE)/(sin 100))  OF=((sin 40)/(sin 100))  EF=((sin 60)/(sin 100))  ((OU)/(sin 35))=((EU)/(sin 80))=((OE)/(sin 115))  OU=((sin 35)/(sin 115))  EU=((sin 80)/(sin 115))  UF=(√((((sin 80)/(sin 115)))^2 +(((sin 60)/(sin 100)))^2 −2(((sin 80)/(sin 115)))(((sin 60)/(sin 100)))cos 5))  ((sin x)/(OU))=((sin 20)/(UF))  sin x=((OU×sin 20)/(UF))  =((sin 35×sin 20)/(sin 115×(√((((sin 80)/(sin 115)))^2 +(((sin 60)/(sin 100)))^2 −2(((sin 80)/(sin 115)))(((sin 60)/(sin 100)))cos 5))))  x=sin^(−1) ((sin 35×sin 20)/(sin 115×(√((((sin 80)/(sin 115)))^2 +(((sin 60)/(sin 100)))^2 −2(((sin 80)/(sin 115)))(((sin 60)/(sin 100)))cos 5))))  =75°
$${say}\:{OE}=\mathrm{1} \\ $$$$\frac{{OF}}{\mathrm{sin}\:\mathrm{40}}=\frac{{EF}}{\mathrm{sin}\:\mathrm{60}}=\frac{{OE}}{\mathrm{sin}\:\mathrm{100}} \\ $$$${OF}=\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{sin}\:\mathrm{100}} \\ $$$${EF}=\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}} \\ $$$$\frac{{OU}}{\mathrm{sin}\:\mathrm{35}}=\frac{{EU}}{\mathrm{sin}\:\mathrm{80}}=\frac{{OE}}{\mathrm{sin}\:\mathrm{115}} \\ $$$${OU}=\frac{\mathrm{sin}\:\mathrm{35}}{\mathrm{sin}\:\mathrm{115}} \\ $$$${EU}=\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}} \\ $$$${UF}=\sqrt{\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)\mathrm{cos}\:\mathrm{5}} \\ $$$$\frac{\mathrm{sin}\:{x}}{{OU}}=\frac{\mathrm{sin}\:\mathrm{20}}{{UF}} \\ $$$$\mathrm{sin}\:{x}=\frac{{OU}×\mathrm{sin}\:\mathrm{20}}{{UF}} \\ $$$$=\frac{\mathrm{sin}\:\mathrm{35}×\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{115}×\sqrt{\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)\mathrm{cos}\:\mathrm{5}}} \\ $$$${x}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{sin}\:\mathrm{35}×\mathrm{sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{115}×\sqrt{\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{sin}\:\mathrm{80}}{\mathrm{sin}\:\mathrm{115}}\right)\left(\frac{\mathrm{sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{100}}\right)\mathrm{cos}\:\mathrm{5}}} \\ $$$$=\mathrm{75}° \\ $$
Commented by Tawa11 last updated on 28/Nov/21
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by NUR23 last updated on 08/Mar/22
thank you very much sir i was out lf the?line
$${thank}\:{you}\:{very}\:{much}\:{sir}\:{i}\:{was}\:{out}\:{lf}\:{the}?{line} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *