Menu Close

Question-160516




Question Number 160516 by peter frank last updated on 30/Nov/21
Answered by aleks041103 last updated on 06/Dec/21
u=x/y⇒y=x/u  ⇒y′=((u−u′x)/u^2 )=(1/u)−((u′)/u^2 )x  ⇒(1/u)−(x/u^2 ) (du/dx)=e^u   ⇒(x/u^2 ) (du/dx)=(1/u)−e^u   ⇒(du/(u−u^2 e^u ))=(dx/x)
$${u}={x}/{y}\Rightarrow{y}={x}/{u} \\ $$$$\Rightarrow{y}'=\frac{{u}−{u}'{x}}{{u}^{\mathrm{2}} }=\frac{\mathrm{1}}{{u}}−\frac{{u}'}{{u}^{\mathrm{2}} }{x} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{u}}−\frac{{x}}{{u}^{\mathrm{2}} }\:\frac{{du}}{{dx}}={e}^{{u}} \\ $$$$\Rightarrow\frac{{x}}{{u}^{\mathrm{2}} }\:\frac{{du}}{{dx}}=\frac{\mathrm{1}}{{u}}−{e}^{{u}} \\ $$$$\Rightarrow\frac{{du}}{{u}−{u}^{\mathrm{2}} {e}^{{u}} }=\frac{{dx}}{{x}} \\ $$
Commented by aleks041103 last updated on 06/Dec/21
and it goes on somehow...  we need to solve:  ∫(du/(u−u^2 e^u ))=?
$${and}\:{it}\:{goes}\:{on}\:{somehow}… \\ $$$${we}\:{need}\:{to}\:{solve}: \\ $$$$\int\frac{{du}}{{u}−{u}^{\mathrm{2}} {e}^{{u}} }=? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *